| DT_legendre | R Documentation |
A data frame with 4 columns; SUBJECT, X, Xf and Y to show how to use the Legendre polynomials in the lmebreed function using a numeric variable X and a response variable Y.
data("DT_legendre")
The format is: chr "DT_legendre"
This data was simulated for fruit breeding applications.
Giovanny Covarrubias-Pazaran (2024). lme4breeding: enabling genetic evaluation in the age of genomic data. To be submitted to Bioinformatics.
Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48.
The core function of the package lmebreed
data(DT_legendre)
DT <- DT_legendre
head(DT)
library(orthopolynom)
Z <- with(DT, smm(leg(X,1)) )
for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]}
## diagonal random regression Y ~ Xf + (0+leg0+leg1|| SUBJECT)
## unstructured random regression Y ~ Xf + (0+leg0+leg1| SUBJECT)
mRR2b<-lmebreed(Y ~ Xf + (0+leg0+leg1| SUBJECT),
, data=DT)
vc <- VarCorr(mRR2b); print(vc,comp=c("Variance"))
sigma(mRR2b)^2 # error variance
BLUP <- ranef(mRR2b, condVar=TRUE)
PEV <- lapply(BLUP, function(x){attr(x, which="postVar")}) # take sqrt() for SEs
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.