cv.glmmLasso: Cross Validation for glmmLasso package

Description Usage Arguments Value References See Also Examples

Description

Cross Validation for glmmLasso package as shown in example xxx

Usage

1
2
cv.glmmLasso(dat, form.fixed = NULL, form.rnd = NULL, lambda = seq(500, 0,
  by = -5), family = stats::gaussian(link = "identity"))

Arguments

dat

data.frame, containing y,X,Z and subject variables

form.fixed

formaula, fixed param formula, Default: NULL

form.rnd

list, named list containing random effect formula, Default: NULL

lambda

numeric, vector containing lasso penalty levels, Default: seq(500, 0, by = -5)

family

family, family function that defines the distribution link of the glmm, Default: gaussian(link = "identity")

Value

list of a fitted glmmLasso object and the cv BIC path

References

A. Groll and G. Tutz. Variable selection for generalized linear mixed models by L1-penalized estimation. Statistics and Computing, pages 1–18, 2014.

cv function is the generalized form of last example glmmLasso package demo file

See Also

glmmLasso

Examples

1
## Not run: cv.glmmLasso(initialize_example(seed=1))

Example output

Loading required package: lmmlasso
Loading required package: emulator
Loading required package: mvtnorm
Loading required package: miscTools
Loading required package: penalized
Loading required package: survival
Welcome to penalized. For extended examples, see vignette("penalized").
----------------------------------------------------------------------
This is a test release of the package 'lmmlasso'. If you have any questions or problems, do not hesitate to contact the author.
----------------------------------------------------------------------

lmmen documentation built on May 1, 2019, 8:53 p.m.