| cdfpdq3 | R Documentation |
This function computes the cumulative probability or nonexceedance probability of the Polynomial Density-Quantile3 (PDQ3) distribution given parameters (\xi, \alpha, \kappa) computed by parpdq4. The cumulative distribution function has no explicit form and requires numerical methods. The R function uniroot() is used to root the quantile function quapdq3 to compute the nonexceedance probability. The distribution's canonical definition is in terms of the quantile function (quapdq3).
cdfpdq3(x, para, paracheck=TRUE)
x |
A real value vector. |
para |
The parameters from |
paracheck |
A logical switch as to whether the validity of the parameters should be checked. Default is |
Nonexceedance probability (F) for x.
W.H. Asquith
Hosking, J.R.M., 2007, Distributions with maximum entropy subject to constraints on their L-moments or expected order statistics: Journal of Statistical Planning and Inference, v. 137, no. 9, pp. 2870–2891, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.jspi.2006.10.010")}.
pdfpdq3, quapdq3, lmompdq3, parpdq3
## Not run:
FF <- seq(0.001, 0.999, by=0.001)
para <- list(para=c(0.6933, 1.5495, 0.5488), type="pdq3")
Fpdq3 <- cdfpdq3(quapdq3(FF, para), para)
plot(FF, Fpdq3, type="l", col=grey(0.8), lwd=4)
# should be a 1:1 line, it is
## End(Not run)
## Not run:
para <- list(para=c(0.6933, 1.5495, 0.5488), type="pdq3")
X <- seq(-5, +12, by=(12 - -5) / 500)
plot( X, cdfpdq3(X, para), type="l", col=grey(0.8), lwd=4, ylim=c(0, 1))
lines(X, pf( exp(X), df1=7, df2=1), lty=2)
lines(X, c(NA, diff( cdfpdq3(X, para)) / ((12 - -5) / 500)))
lines(X, c(NA, diff( pf(exp(X), df1=7, df2=1)) / ((12 - -5) / 500)), lty=2) #
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.