# cdftri: Cumulative Distribution Function of the Asymmetric Triangular...

### Description

This function computes the cumulative probability or nonexceedance probability of the Asymmetric Triangular distribution given parameters (ν, ω, and ψ) computed by partri. The cumulative distribution function is

F(x) = \frac{(x - ν)^2}{(ω-ν)(ψ-ν)}\mbox{,}

for x < ω,

F(x) = 1 - \frac{(ψ - x)^2}{(ψ - ω)(ψ - ν)}\mbox{,}

for x > ω, and

F(x) = \frac{(ω - ν)}{(ψ - ν)}\mbox{,}

for x = ω where x(F) is the quantile for nonexceedance probability F, ν is the minimum, ψ is the maximum, and ω is the mode of the distribution.

### Usage

 1 cdftri(x, para) 

### Arguments

 x A real value vector. para The parameters from partri or vec2par.

### Value

Nonexceedance probability (F) for x.

### Author(s)

W.H. Asquith

pdftri, quatri, lmomtri, partri

### Examples

 1 2  lmr <- lmoms(c(46, 70, 59, 36, 71, 48, 46, 63, 35, 52)) cdftri(50,partri(lmr)) 

Search within the lmomco package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.