gini.mean.diff | R Documentation |
The Gini mean difference statistic \mathcal{G}
is a robust estimator of distribution scale and is closely related to the second L-moment \lambda_2 = \mathcal{G}/2
.
\mathcal{G} = \frac{2}{n(n-1)}\sum_{i=1}^n (2i - n - 1) x_{i:n}\mbox{,}
where x_{i:n}
are the sample order statistics.
gini.mean.diff(x)
x |
A vector of data values that will be reduced to non-missing values. |
An R list
is returned.
gini |
The gini mean difference |
L2 |
The L-scale (second L-moment) because |
source |
An attribute identifying the computational source of the Gini's Mean Difference: “gini.mean.diff”. |
W.H. Asquith
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105–124.
Jurečková, J., and Picek, J., 2006, Robust statistical methods with R: Boca Raton, Fla., Chapman and Hall/CRC, ISBN 1–58488–454–1.
lmoms
fake.dat <- c(123, 34, 4, 654, 37, 78)
gini <- gini.mean.diff(fake.dat)
lmr <- lmoms(fake.dat)
str(gini)
print(abs(gini$L2 - lmr$lambdas[2]))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.