lmomaep4 | R Documentation |
This function computes the L-moments of the 4-parameter Asymmetric Exponential Power distribution given the parameters (\xi
, \alpha
, \kappa
, and h
) from paraep4
. The first four L-moments are complex. The mean \lambda_1
is
\lambda_1 = \xi + \alpha(1/\kappa - \kappa)\frac{\Gamma(2/h)}{\Gamma(1/h)}\mbox{,}
where \Gamma(x)
is the complete gamma function or gamma()
in R.
The L-scale \lambda_2
is
\lambda_2 = -\frac{\alpha\kappa(1/\kappa - \kappa)^2\Gamma(2/h)}
{(1+\kappa^2)\Gamma(1/h)}
+ 2\frac{\alpha\kappa^2(1/\kappa^3 + \kappa^3)\Gamma(2/h)I_{1/2}(1/h,2/h)}
{(1+\kappa^2)^2\Gamma(1/h)}\mbox{,}
where I_{1/2}(1/h,2/h)
is the cumulative distribution function of the Beta distribution (I_x(a,b)
) or pbeta(1/2,
shape1=1/h,
shape2=2/h)
in R. This function is also referred to as the normalized incomplete beta function (Delicado and Goria, 2008) and defined as
I_x(a,b) = \frac{\int_0^x t^{a-1} (1-t)^{b-1}\; \mathrm{d}t}{\beta(a,b)}\mbox{,}
where \beta(1/h, 2/h)
is the complete beta function or beta(1/h, 2/h)
in R.
The third L-moment \lambda_3
is
\lambda_3 = A_1 + A_2 + A_3\mbox{,}
where the A_i
are
A_1 = \frac{\alpha(1/\kappa - \kappa)(\kappa^4 - 4\kappa^2 + 1)\Gamma(2/h)}
{(1+\kappa^2)^2\Gamma(1/h)}\mbox{,}
A_2 = -6\frac{\alpha\kappa^3(1/\kappa - \kappa)(1/\kappa^3 + \kappa^3)\Gamma(2/h)I_{1/2}(1/h,2/h)}
{(1+\kappa^2)^3\Gamma(1/h)}\mbox{,}
A_3 = 6\frac{\alpha(1+\kappa^4)(1/\kappa - \kappa)\Gamma(2/h)\Delta}
{(1+\kappa^2)^2\Gamma(1/h)}\mbox{,}
and where \Delta
is
\Delta = \frac{1}{\beta(1/h, 2/h)}\int_0^{1/2} t^{1/h - 1} (1-t)^{2/h - 1} I_{(1-t)/(2-t)}(1/h, 3/h) \; \mathrm{d}t\mbox{.}
The fourth L-moment \lambda_4
is
\lambda_4 = B_1 + B_2 + B_3 + B_4\mbox{,}
where the B_i
are
B_1 = -\frac{\alpha\kappa(1/\kappa - \kappa)^2(\kappa^4 - 8\kappa^2 + 1)\Gamma(2/h)}
{(1+\kappa^2)^3\Gamma(1/h)}\mbox{,}
B_2 = 12\frac{\alpha\kappa^2(\kappa^3 + 1/\kappa^3)(\kappa^4 - 3\kappa^2 + 1)\Gamma(2/h)I_{1/2}(1/h,2/h)}
{(1+\kappa^2)^4\Gamma(1/h)}\mbox{,}
B_3 = -30\frac{\alpha\kappa^3(1/\kappa - \kappa)^2(1/\kappa^2 + \kappa^2)\Gamma(2/h)\Delta}
{(1+\kappa^2)^3\Gamma(1/h)}\mbox{,}
B_4 = 20\frac{\alpha\kappa^4(1/\kappa^5 + \kappa^5)\Gamma(2/h)\Delta_1}
{(1+\kappa^2)^4\Gamma(1/h)}\mbox{,}
and where \Delta_1
is
\Delta_1 = \frac{\int_0^{1/2} \int_0^{(1-y)/(2-y)} y^{1/h - 1} (1-y)^{2/h - 1}
z^{1/h - 1} (1-z)^{3/h - 1}
\;I'\; \mathrm{d}z\,\mathrm{d}y}{\beta(1/h, 2/h)\beta(1/h, 3/h)}\mbox{,}
for which I' = I_{(1-z)(1-y)/(1+(1-z)(1-y))}(1/h, 2/h)
is the cumulative distribution function of the beta distribution (I_x(a,b)
) or pbeta((1-z)(1-y)/(1+(1-z)(1-y)), shape1=1/h, shape2=2/h)
in R. Finally, if the \tau_3
of the distribution is zero (symmetrical), then the distribution is known as the Exponential Power (see lmrdia46
).
lmomaep4(para, paracheck=TRUE, t3t4only=FALSE)
para |
The parameters of the distribution. |
paracheck |
Should the parameters be checked for validity by the |
t3t4only |
Return only the |
.
An R list
is returned.
lambdas |
Vector of the L-moments. First element is
|
ratios |
Vector of the L-moment ratios. Second element is
|
trim |
Level of symmetrical trimming used in the computation, which is |
leftrim |
Level of left-tail trimming used in the computation, which is |
rightrim |
Level of right-tail trimming used in the computation, which is |
source |
An attribute identifying the computational source of the L-moments: “lmomaep4”. |
or an alternative R list is returned if t3t4only=TRUE
T3 |
L-skew, |
T4 |
L-kurtosis, |
W.H. Asquith
Asquith, W.H., 2014, Parameter estimation for the 4-parameter asymmetric exponential power distribution by the method of L-moments using R: Computational Statistics and Data Analysis, v. 71, pp. 955–970.
Delicado, P., and Goria, M.N., 2008, A small sample comparison of maximum likelihood, moments and L-moments methods for the asymmetric exponential power distribution: Computational Statistics and Data Analysis, v. 52, no. 3, pp. 1661–1673.
paraep4
, cdfaep4
, pdfaep4
, quaaep4
## Not run:
para <- vec2par(c(0, 1, 0.5, 4), type="aep4")
lmomaep4(para)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.