| pdfkur | R Documentation |
This function computes the probability density
of the Kumaraswamy distribution given parameters (\alpha and \beta) computed by parkur. The probability density function is
f(x) = \alpha\beta x^{\alpha - 1}(1-x^\alpha)^{\beta-1} \mbox{,}
where f(x) is the nonexceedance probability for quantile x,
\alpha is a shape parameter, and \beta is a shape parameter.
pdfkur(x, para)
x |
A real value vector. |
para |
The parameters from |
Probability density (f) for x.
W.H. Asquith
Jones, M.C., 2009, Kumaraswamy's distribution—A beta-type distribution with some tractability advantages: Statistical Methodology, v. 6, pp. 70–81.
cdfkur, quakur, lmomkur, parkur
lmr <- lmoms(c(0.25, 0.4, 0.6, 0.65, 0.67, 0.9))
kur <- parkur(lmr)
x <- quakur(0.5,kur)
pdfkur(x,kur)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.