pdfwei | R Documentation |
This function computes the probability density of the Weibull distribution given parameters (\zeta
, \beta
, and \delta
) computed by parwei
. The probability density function is
f(x) = \delta Y^{\delta-1} \exp(-Y^\delta)/\beta
where f(x)
is the probability density, Y = (x-\zeta)/\beta
, quantile x
,
\zeta
is a location parameter, \beta
is a scale parameter, and
\delta
is a shape parameter.
The Weibull distribution is a reverse Generalized Extreme Value distribution. As result, the Generalized Extreme Value algorithms are used for implementation of the Weibull in lmomco. The relations between the Generalized Extreme Value parameters (\xi
, \alpha
, and \kappa
) are \kappa = 1/\delta
, \alpha = \beta/\delta
, and \xi = \zeta - \beta
. These relations are available in Hosking and Wallis (1997).
In R, the probability distribution function of the Weibull distribution is pweibull
. Given a Weibull parameter object para
, the R syntax is pweibull(x+para$para[1],
para$para[3],
scale=para$para[2])
. For the lmomco implmentation, the reversed Generalized Extreme Value distribution pdfgev
is used and again in R syntax is pdfgev(-x,para)
.
pdfwei(x, para)
x |
A real value vector. |
para |
The parameters from |
Probability density (f
) for x
.
W.H. Asquith
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
cdfwei
, quawei
, lmomwei
, parwei
# Evaluate Weibull deployed here and built-in function (pweibull)
lmr <- lmoms(c(123,34,4,654,37,78))
WEI <- parwei(lmr)
F1 <- cdfwei(50,WEI)
F2 <- pweibull(50+WEI$para[1],shape=WEI$para[3],scale=WEI$para[2])
if(F1 == F2) EQUAL <- TRUE
## Not run:
# The Weibull is a reversed generalized extreme value
Q <- sort(rlmomco(34,WEI)) # generate Weibull sample
lm1 <- lmoms( Q) # regular L-moments
lm2 <- lmoms(-Q) # L-moment of negated (reversed) data
WEI <- parwei(lm1) # parameters of Weibull
GEV <- pargev(lm2) # parameters of GEV
F <- nonexceeds() # Get a vector of nonexceedance probabilities
plot(pp(Q),Q)
lines(cdfwei(Q,WEI),Q,lwd=5,col=8)
lines(1-cdfgev(-Q,GEV),Q,col=2) # line overlaps previous distribution
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.