qua.ostat: Compute the Quantiles of the Distribution of an Order...

Description Usage Arguments Value Author(s) References See Also Examples

Description

This function computes a specified quantile by nonexceedance probability F for the jth-order statistic of a sample of size n for a given distribution. Let the quantile function (inverse distribution) of the Beta distribution be

\mathrm{B}^{(-1)}(F,j,n-j+1) \mbox{,}

and let x(F,Θ) represent the quantile function of the given distribution and Θ represents a vector of distribution parameters. The quantile function of the distribution of the jth-order statistic is

x(\mathrm{B}^{(-1)}(F,j,n-j+1),Θ) \mbox{.}

Usage

1
qua.ostat(f,j,n,para=NULL)

Arguments

f

The nonexceedance probability F for the quantile.

j

The jth-order statistic x_{1:n} ≤ x_{2:n} ≤ … ≤ x_{j:n} ≤ x_{n:n}.

n

The sample size.

para

A distribution parameter list from a function such as lmom2par or vec2par.

Value

The quantile of the distribution of the jth-order statistic is returned.

Author(s)

W.H. Asquith

References

Gilchrist, W.G., 2000, Statistical modelling with quantile functions: Chapman and Hall/CRC, Boca Raton, Fla.

See Also

lmom2par, vec2par

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
gpa <- vec2par(c(100,500,0.5),type='gpa')
n <- 20   # the sample size
j <- 15   # the 15th order statistic
F <- 0.99 # the 99th percentile
theoOstat <- qua.ostat(F,j,n,gpa)
## Not run: 
# Let us test this value against a brute force estimate.
Jth <- vector(mode = "numeric")
for(i in seq(1,10000)) {
  Q <- sort(rlmomco(n,gpa))
  Jth[i] <- Q[j]
}
bruteOstat <- quantile(Jth,F) # estimate by built-in function
theoOstat  <- signif(theoOstat,digits=5)
bruteOstat <- signif(bruteOstat,digits=5)
cat(c("Theoretical=",theoOstat,"  Simulated=",bruteOstat,"\n"))

## End(Not run)

lmomco documentation built on March 14, 2020, 5:06 p.m.