# quarevgum: Quantile Function of the Reverse Gumbel Distribution In lmomco: L-Moments, Censored L-Moments, Trimmed L-Moments, L-Comoments, and Many Distributions

 quarevgum R Documentation

## Quantile Function of the Reverse Gumbel Distribution

### Description

This function computes the quantiles of the Reverse Gumbel distribution given parameters (ξ and α) computed by `parrevgum`. The quantile function is

x(F) = ξ + α\log(-\log(1-F)) \mbox{,}

where x(F) is the quantile for nonexceedance probability F, ξ is a location parameter, and α is a scale parameter.

### Usage

```quarevgum(f, para, paracheck=TRUE)
```

### Arguments

 `f` Nonexceedance probability (0 ≤ F ≤ 1). `para` The parameters from `parrevgum` or `vec2par`. `paracheck` A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming.

### Value

Quantile value for nonexceedance probability F.

W.H. Asquith

### References

Hosking, J.R.M., 1995, The use of L-moments in the analysis of censored data, in Recent Advances in Life-Testing and Reliability, edited by N. Balakrishnan, chapter 29, CRC Press, Boca Raton, Fla., pp. 546–560.

`cdfrevgum`, `pdfrevgum`, `lmomrevgum`, `parrevgum`

### Examples

```# See p. 553 of Hosking (1995)
# Data listed in Hosking (1995, table 29.3, p. 553)
D <- c(-2.982, -2.849, -2.546, -2.350, -1.983, -1.492, -1.443,
-1.394, -1.386, -1.269, -1.195, -1.174, -0.854, -0.620,
-0.576, -0.548, -0.247, -0.195, -0.056, -0.013,  0.006,
0.033,  0.037,  0.046,  0.084,  0.221,  0.245,  0.296)
D <- c(D,rep(.2960001,40-28)) # 28 values, but Hosking mentions
# 40 values in total
z <-  pwmRC(D,threshold=.2960001)
str(z)
# Hosking reports B-type L-moments for this sample are
# lamB1 = -.516 and lamB2 = 0.523
btypelmoms <- pwm2lmom(z\$Bbetas)
# My version of R reports lamB1 = -0.5162 and lamB2 = 0.5218
str(btypelmoms)
rg.pars <- parrevgum(btypelmoms,z\$zeta)
str(rg.pars)
# Hosking reports xi = 0.1636 and alpha = 0.9252 for the sample
# My version of R reports xi = 0.1635 and alpha = 0.9254
F  <- nonexceeds()
PP <- pp(D) # plotting positions of the data
plot(PP,sort(D),ylim=range(quarevgum(F,rg.pars)))
lines(F,quarevgum(F,rg.pars))
# In the plot notice how the data flat lines at the censoring level,
# but the distribution continues on.  Neat.
```

lmomco documentation built on Aug. 27, 2022, 1:06 a.m.