# tlmrglo: Compute Select TL-moment ratios of the Generalized Logistic... In lmomco: L-Moments, Censored L-Moments, Trimmed L-Moments, L-Comoments, and Many Distributions

## Description

This function computes select TL-moment ratios of the Generalized Logistic distribution for defaults of ξ = 0 and α = 1. This function can be useful for plotting the trajectory of the distribution on TL-moment ratio diagrams of τ^{(t_1,t_2)}_2, τ^{(t_1,t_2)}_3, τ^{(t_1,t_2)}_4, τ^{(t_1,t_2)}_5, and τ^{(t_1,t_2)}_6. In reality, τ^{(t_1,t_2)}_2 is dependent on the values for ξ and α. If the message

 `1` ```Error in integrate(XofF, 0, 1) : the integral is probably divergent ```

occurs then careful adjustment of the shape parameter κ parameter range is very likely required. Remember that TL-moments with nonzero trimming permit computation of TL-moments into parameter ranges beyond those recognized for the usual (untrimmed) L-moments.

## Usage

 ```1 2``` ```tlmrglo(trim=NULL, leftrim=NULL, rightrim=NULL, xi=0, alpha=1, kbeg=-.99, kend=0.99, by=.1) ```

## Arguments

 `trim` Level of symmetrical trimming to use in the computations. Although `NULL` in the argument list, the default is 0—the usual L-moment ratios are returned. `leftrim` Level of trimming of the left-tail of the sample. `rightrim` Level of trimming of the right-tail of the sample. `xi` Location parameter of the distribution. `alpha` Scale parameter of the distribution. `kbeg` The beginning κ value of the distribution. `kend` The ending κ value of the distribution. `by` The increment for the `seq()` between `kbeg` and `kend`.

## Value

An R `list` is returned.

 `tau2` A vector of the τ^{(t_1,t_2)}_2 values. `tau3` A vector of the τ^{(t_1,t_2)}_3 values. `tau4` A vector of the τ^{(t_1,t_2)}_4 values. `tau5` A vector of the τ^{(t_1,t_2)}_5 values. `tau6` A vector of the τ^{(t_1,t_2)}_6 values.

## Note

The function uses numerical integration of the quantile function of the distribution through the `theoTLmoms` function.

## Author(s)

W.H. Asquith

`quaglo`, `theoTLmoms`
 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44``` ```## Not run: tlmrglo(leftrim=1, rightrim=3, xi=0, alpha=4) tlmrglo(leftrim=1, rightrim=3, xi=32, alpha=83) # another slow example ## End(Not run) ## Not run: # Plot and L-moment ratio diagram of Tau3 and Tau4 # with exclusive focus on the GLO distribution. plotlmrdia(lmrdia(), autolegend=TRUE, xleg=-.1, yleg=.6, xlim=c(-.8, .7), ylim=c(-.1, .8), nolimits=TRUE, nogev=TRUE, nogpa=TRUE, nope3=TRUE, nogno=TRUE, nocau=TRUE, noexp=TRUE, nonor=TRUE, nogum=TRUE, noray=TRUE, nouni=TRUE) # Compute the TL-moment ratios for trimming of one # value on the left and four on the right. Notice the # expansion of the kappa parameter space from # -1 < k < -1 to something larger based on manual # adjustments until blue curve encompassed the plot. J <- tlmrglo(kbeg=-2.5, kend=1.9, leftrim=1, rightrim=4) lines(J\$tau3, J\$tau4, lwd=2, col=2) # RED CURVE # Compute the TL-moment ratios for trimming of four # values on the left and one on the right. J <- tlmrglo(kbeg=-1.65, kend=3, leftrim=4, rightrim=1) lines(J\$tau3, J\$tau4, lwd=2, col=4) # BLUE CURVE # The kbeg and kend can be manually changed to see how # the resultant curve expands or contracts on the # extent of the L-moment ratio diagram. ## End(Not run) ## Not run: # Following up, let us plot the two quantile functions LM <- vec2par(c(0,1,0.99), type='glo', paracheck=FALSE) TLM <- vec2par(c(0,1,3.00), type='glo', paracheck=FALSE) F <- nonexceeds() plot(qnorm(F), quaglo(F, LM), type="l") lines(qnorm(F), quaglo(F, TLM, paracheck=FALSE), col=2) # Notice how the TLM parameterization runs off towards # infinity much much earlier than the conventional # near limits of the GLO. ## End(Not run) ```