| locfit | R Documentation | 
locfit is the model formula-based interface to the Locfit
library for fitting local regression and likelihood models.
locfit is implemented as a front-end to locfit.raw.
See that function for options to control smoothing parameters,
fitting family and other aspects of the fit.
locfit(formula, data=sys.frame(sys.parent()), weights=1, cens=0, base=0,
       subset, geth=FALSE, ..., lfproc=locfit.raw)
formula | 
 Model Formula; e.g.   | 
data | 
 Data Frame.  | 
weights | 
 Prior weights (or sample sizes) for individual observations. This is typically used where observations have unequal variance.  | 
cens | 
 Censoring indicator.   | 
base | 
 Baseline for local fitting. For local regression models, specifying
a   | 
subset | 
 Subset observations in the data frame.  | 
geth | 
 Don't use.  | 
... | 
 Other arguments to   | 
lfproc | 
 A processing function to compute the local fit. Default is
  | 
An object with class "locfit". A standard set of methods for printing,
ploting, etc. these objects is provided.
Loader, C. (1999). Local Regression and Likelihood. Springer, New York.
locfit.raw
# fit and plot a univariate local regression
data(ethanol, package="locfit")
fit <- locfit(NOx ~ E, data=ethanol)
plot(fit, get.data=TRUE)
# a bivariate local regression with smaller smoothing parameter
fit <- locfit(NOx~lp(E,C,nn=0.5,scale=0), data=ethanol)
plot(fit)
# density estimation
data(geyser, package="locfit")
fit <- locfit( ~ lp(geyser, nn=0.1, h=0.8))
plot(fit,get.data=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.