inst/doc/locuszoomr.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE
)
library(locuszoomr)

## ----eval = FALSE-------------------------------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
#   install.packages("BiocManager")
# BiocManager::install("ensembldb")
# BiocManager::install("EnsDb.Hsapiens.v75")

## ----eval = FALSE-------------------------------------------------------------
# install.packages("locuszoomr")

## ----eval = FALSE-------------------------------------------------------------
# devtools::install_github("myles-lewis/locuszoomr")

## -----------------------------------------------------------------------------
library(locuszoomr)
data(SLE_gwas_sub)  ## limited subset of data from SLE GWAS
head(SLE_gwas_sub)

## ----eval=FALSE---------------------------------------------------------------
# library(EnsDb.Hsapiens.v75)
# loc <- locus(data = SLE_gwas_sub, gene = 'UBE2L3', flank = 1e5,
#              ens_db = "EnsDb.Hsapiens.v75")
# summary(loc)
# locus_plot(loc)

## ----echo=FALSE, message=FALSE, fig.dim=c(8, 7)-------------------------------
if (require(EnsDb.Hsapiens.v75)) {
loc <- locus(data = SLE_gwas_sub, gene = 'UBE2L3', flank = 1e5,
             ens_db = "EnsDb.Hsapiens.v75")
summary(loc)
locus_plot(loc)
}

## ----eval=FALSE---------------------------------------------------------------
# library(AnnotationHub)
# ah <- AnnotationHub()
# query(ah, c("EnsDb", "Homo sapiens"))

## ----eval=FALSE---------------------------------------------------------------
# ## AnnotationHub with 25 records
# ## # snapshotDate(): 2023-04-25
# ## # $dataprovider: Ensembl
# ## # $species: Homo sapiens
# ## # $rdataclass: EnsDb
# ## # additional mcols(): taxonomyid, genome, description, coordinate_1_based, maintainer,
# ## #   rdatadateadded, preparerclass, tags, rdatapath, sourceurl, sourcetype
# ## # retrieve records with, e.g., 'object[["AH53211"]]'
# ##
# ##              title
# ##   AH53211  | Ensembl 87 EnsDb for Homo Sapiens
# ##   ...        ...
# ##   AH100643 | Ensembl 106 EnsDb for Homo sapiens
# ##   AH104864 | Ensembl 107 EnsDb for Homo sapiens
# ##   AH109336 | Ensembl 108 EnsDb for Homo sapiens
# ##   AH109606 | Ensembl 109 EnsDb for Homo sapiens
# ##   AH113665 | Ensembl 110 EnsDb for Homo sapiens

## ----eval=FALSE---------------------------------------------------------------
# ensDb_v106 <- ah[["AH100643"]]
# 
# # built-in mini dataset
# data("SLE_gwas_sub")
# loc <- locus(data = SLE_gwas_sub, gene = 'UBE2L3', fix_window = 1e6,
#              ens_db = ensDb_v106)
# locus_plot(loc)

## ----eval = FALSE-------------------------------------------------------------
# # Locus plot using SLE GWAS data from Bentham et al 2015
# # FTP download full summary statistics from
# # https://www.ebi.ac.uk/gwas/studies/GCST003156
# library(data.table)
# SLE_gwas <- fread('../bentham_2015_26502338_sle_efo0002690_1_gwas.sumstats.tsv')
# loc <- locus(SLE_gwas, gene = 'UBE2L3', flank = 1e5,
#              ens_db = "EnsDb.Hsapiens.v75")
# loc <- link_LD(loc, token = "your_token")
# locus_plot(loc)

## ----eval=FALSE---------------------------------------------------------------
# loc <- locus(SLE_gwas_sub, gene = 'UBE2L3', flank = 1e5, LD = "r2",
#              ens_db = "EnsDb.Hsapiens.v75")
# locus_plot(loc, labels = c("index", "rs140492"),
#                 label_x = c(4, -5))

## ----echo=FALSE, message=FALSE, fig.dim=c(8, 7)-------------------------------
if (require(EnsDb.Hsapiens.v75)) {
loc <- locus(SLE_gwas_sub, gene = 'UBE2L3', flank = 1e5, LD = "r2",
             ens_db = "EnsDb.Hsapiens.v75")
locus_plot(loc, labels = c("index", "rs140492"), label_x = c(4, -5))
}

## ----eval=FALSE---------------------------------------------------------------
# loc3 <- locus(SLE_gwas_sub, gene = 'STAT4', flank = 1e5, LD = "r2",
#               ens_db = "EnsDb.Hsapiens.v75")
# loc3 <- link_recomb(loc3)
# locus_plot(loc3)

## ----out.width='80%', echo=FALSE----------------------------------------------
knitr::include_graphics("recomb.png")

## ----eval=FALSE---------------------------------------------------------------
# library(rtracklayer)
# recomb.hg19 <- import.bw("/../hapMapRelease24CombinedRecombMap.bw")
# loc3 <- link_recomb(loc3, recomb = recomb.hg19)
# locus_plot(loc3)

## ----eval=FALSE---------------------------------------------------------------
# # add column 'typed' as a factor which is 1 for typed, 0 for imputed
# loc$data$typed <- factor(rbinom(n = nrow(loc$data), 1, 0.3))
# # convert column to shapes by adding a column called 'pch'
# loc$data$pch <- c(21, 24)[loc$data$typed]
# locus_plot(loc)
# # pch 21 = circles = imputed
# # pch 24 = triangles = typed

## ----eval=FALSE---------------------------------------------------------------
# # Filter by gene biotype
# locus_plot(loc, filter_gene_biotype = "protein_coding")
# 
# # Custom selection of genes using gene names
# locus_plot(loc, filter_gene_name = c('UBE2L3', 'RIMBP3C', 'YDJC', 'PPIL2',
#                                      'PI4KAP2', 'MIR301B'))

## ----eval=FALSE---------------------------------------------------------------
# genetracks(loc, highlight = "UBE2L3")

## ----echo=FALSE, fig.dim=c(7, 3.5)--------------------------------------------
if (require(EnsDb.Hsapiens.v75)) {
genetracks(loc, highlight = "UBE2L3")
}

## ----eval=FALSE---------------------------------------------------------------
# # Limit the number of tracks
# # Filter by gene biotype
# # Customise colours
# genetracks(loc, maxrows = 3, filter_gene_biotype = 'protein_coding',
#            gene_col = 'grey', exon_col = 'orange', exon_border = 'darkgrey')

## ----echo=FALSE, fig.dim=c(7, 2.5)--------------------------------------------
if (require(EnsDb.Hsapiens.v75)) {
genetracks(loc, maxrows = 3, filter_gene_biotype = 'protein_coding',
           gene_col = 'grey', exon_col = 'orange', exon_border = 'darkgrey')
}

## ----eval = FALSE-------------------------------------------------------------
# loc00 <- locus(gene = 'UBE2L3', flank = 1e5, ens_db = "EnsDb.Hsapiens.v75")
# 
# genetracks(loc00)  # base graphics
# gg_genetracks(loc00)  # ggplot2
# genetrack_ly(loc00)  # plotly

## ----eval=FALSE---------------------------------------------------------------
# # obtain GTEx eQTL data from LDlinkR
# # needs personal access token for LDlink
# loc2 <- locus(SLE_gwas_sub, gene = 'IRF5', flank = c(7e4, 2e5), LD = "r2",
#               ens_db = "EnsDb.Hsapiens.v75")
# loc2 <- link_eqtl(loc2, token = "..")
# head(loc2$LDexp)  # show eQTL data

## ----eval=FALSE---------------------------------------------------------------
# table(loc2$LDexp$Gene_Symbol)
# ##      AHCYL2           IRF5            KCP        METTL2B           NRF1   RP11-212P7.2
# ##           5           1618              1              2              9              3
# ## ...
# 
# table(loc2$LDexp$Tissue)
# ##             Adipose - Subcutaneous          Adipose - Visceral (Omentum)
# ##                                 78                                    69
# ##                      Adrenal Gland                        Artery - Aorta
# ##                                 38                                   109
# ## ...

## ----eval=FALSE---------------------------------------------------------------
# # just plot eQTL results
# eqtl_plot(loc2, tissue = "Whole Blood", eqtl_gene = "IRF5")
# 
# # overlay eqtl plot
# overlay_plot(loc2, eqtl_gene = "IRF5")

## ----out.width='60%', fig.align="center", echo=FALSE--------------------------
knitr::include_graphics("eqtl_overlay.png")

## ----eval=FALSE---------------------------------------------------------------
# locb <- locus(SLE_gwas_sub, gene = 'UBE2L3', flank = 1e5, yvar = "beta",
#               ens_db = "EnsDb.Hsapiens.v75")
# locus_plot(locb)

## ----echo=FALSE, message=FALSE, fig.dim=c(8, 7)-------------------------------
if (require(EnsDb.Hsapiens.v75)) {
locb <- locus(SLE_gwas_sub, gene = 'UBE2L3', flank = 1e5, yvar = "beta",
              ens_db = "EnsDb.Hsapiens.v75")
locus_plot(locb)
}

## ----eval=FALSE---------------------------------------------------------------
# genes <- c("STAT4", "IRF5", "UBE2L3")
# 
# # generate list of 'locus' class objects, one for each gene
# loclist <- lapply(genes, locus,
#                   data = SLE_gwas_sub,
#                   ens_db = "EnsDb.Hsapiens.v75",
#                   LD = "r2")
# 
# ## produce 3 locus plots, one on each page
# pdf("myplot.pdf")
# multi_layout(loclist)
# dev.off()
# 
# ## place 3 locus plots in a row on a single page
# pdf("myplot.pdf")
# multi_layout(loclist, ncol = 3, labels = "index")
# dev.off()
# 
# ## full control
# loc2 <- locus(SLE_gwas_sub, gene = 'IRF5', flank = c(7e4, 2e5), LD = "r2",
#               ens_db = "EnsDb.Hsapiens.v75")
# loc3 <- locus(SLE_gwas_sub, gene = 'STAT4', flank = 1e5, LD = "r2",
#               ens_db = "EnsDb.Hsapiens.v75")
# 
# pdf("myplot.pdf", width = 9, height = 6)
# multi_layout(ncol = 3,
#              plots = {
#                locus_plot(loc, use_layout = FALSE, legend_pos = 'topleft')
#                locus_plot(loc2, use_layout = FALSE, legend_pos = NULL)
#                locus_plot(loc3, use_layout = FALSE, legend_pos = NULL,
#                           labels = "index")
#              })
# dev.off()

## ----echo=FALSE, message=FALSE, fig.dim = c(9,5)------------------------------
if (require(EnsDb.Hsapiens.v75)) {
loc2 <- locus(SLE_gwas_sub, gene = 'IRF5', flank = c(7e4, 2e5), LD = "r2",
              ens_db = "EnsDb.Hsapiens.v75")
loc3 <- locus(SLE_gwas_sub, gene = 'STAT4', flank = 1e5, LD = "r2",
              ens_db = "EnsDb.Hsapiens.v75")

multi_layout(ncol = 3,
             plots = {
               locus_plot(loc, use_layout = FALSE, legend_pos = 'topleft')
               locus_plot(loc2, use_layout = FALSE, legend_pos = NULL)
               locus_plot(loc3, use_layout = FALSE, legend_pos = NULL,
                          labels = "index")
             })
}

## ----eval=FALSE---------------------------------------------------------------
# pdf("myplot2.pdf", width = 6, height = 8)
# # set up layered plot with 2 plots & a gene track; store old par() settings
# oldpar <- set_layers(2)
# scatter_plot(loc, xticks = FALSE)
# line_plot(loc, col = "orange", xticks = FALSE)
# genetracks(loc)
# par(oldpar)  # revert par() settings
# dev.off()

## ----echo=FALSE, fig.dim = c(6,8)---------------------------------------------
if (require(EnsDb.Hsapiens.v75)) {
oldpar <- set_layers(2)
scatter_plot(loc, xticks = FALSE)
line_plot(loc, col = "orange", xticks = FALSE)
genetracks(loc)
par(oldpar)
}

## ----eval=FALSE---------------------------------------------------------------
# dat <- SLE_gwas_sub
# dat$p2 <- -log10(dat$p * 0.1)
# locp <- locus(dat, gene = 'UBE2L3', flank = 1e5, ens_db = "EnsDb.Hsapiens.v75")
# locp2 <- locus(dat, gene = 'UBE2L3', flank = 1e5, yvar = "p2",
#                ens_db = "EnsDb.Hsapiens.v75")
# 
# oldpar <- set_layers(1)
# scatter_plot(locp, xticks = FALSE, pcutoff = NULL, ylim = c(0, 16))
# scatter_plot(locp2, xticks = FALSE, pcutoff = NULL, scheme = "orange",
#              pch = 22, add = TRUE)
# genetracks(loc)
# par(oldpar)

## ----echo=FALSE, message=FALSE, fig.dim = c(7,7)------------------------------
if (require(EnsDb.Hsapiens.v75)) {
dat <- SLE_gwas_sub
dat$p2 <- -log10(dat$p * 0.1)
locp <- locus(dat, gene = 'UBE2L3', flank = 1e5, ens_db = "EnsDb.Hsapiens.v75")
locp2 <- locus(dat, gene = 'UBE2L3', flank = 1e5, yvar = "p2",
               ens_db = "EnsDb.Hsapiens.v75")

oldpar <- set_layers(1)
scatter_plot(locp, xticks = FALSE, pcutoff = NULL, ylim = c(0, 16))
scatter_plot(locp2, xticks = FALSE, pcutoff = NULL, scheme = "orange",
             pch = 22, add = TRUE)
genetracks(loc)
par(oldpar)
}

## ----eval=FALSE---------------------------------------------------------------
# # add vertical lines for gene of interest under the main plot
# pf <- quote({
#   v <- locp$TX[locp$TX$gene_name == "UBE2L3", c("start", "end")]
#   abline(v = v, col = "orange")
# })
# 
# pl <- quote({
#   # add custom text label for index SNP
#   lx <- locp$data$pos[locp$data$rsid == locp$index_snp]
#   ly <- locp$data$logP[locp$data$rsid == locp$index_snp]
#   text(lx, ly, locp$index_snp, pos = 4, cex = 0.8)
#   # add extra points
#   px <- rep(22.05e6, 3)
#   py <- 10:12
#   points(px, py, pch = 21, bg = "green")
#   # add custom legend
#   legend("topleft", legend = c("group A", "group B"),
#          pch = 21, pt.bg = c("blue", "green"), bty = "n")
# })
# 
# locus_plot(locp, pcutoff = NULL, panel.first = pf, panel.last = pl)

## ----echo=FALSE, fig.dim = c(7,7)---------------------------------------------
if (require(EnsDb.Hsapiens.v75)) {
pf <- quote({
  v <- locp$TX[locp$TX$gene_name == "UBE2L3", c("start", "end")]
  abline(v = v, col = "orange")
})

pl <- quote({
  lx <- locp$data$pos[locp$data$rsid == locp$index_snp]
  ly <- locp$data$logP[locp$data$rsid == locp$index_snp]
  text(lx, ly, locp$index_snp, pos = 4, cex = 0.8)
  px <- rep(22.05e6, 3)
  py <- 10:12
  points(px, py, pch = 21, bg = "green")
  legend("topleft", legend = c("group A", "group B"),
         pch = 21, pt.bg = c("blue", "green"), bty = "n")
})

locus_plot(locp, pcutoff = NULL, panel.first = pf, panel.last = pl)
}

## ----eval=FALSE---------------------------------------------------------------
# locus_ggplot(loc)

## ----eval=FALSE---------------------------------------------------------------
# gg_genetracks(loc)

## ----eval=FALSE---------------------------------------------------------------
# p <- gg_scatter(loc)
# p

## ----eval=FALSE---------------------------------------------------------------
# gg_addgenes(p, loc)

## ----eval=FALSE---------------------------------------------------------------
# p <- gg_scatter(loc) +
#   theme(legend.text = element_text(size = 14),
#         legend.title = element_text(size = 14))
# gg_addgenes(p, loc)

## ----eval=FALSE---------------------------------------------------------------
# locus_ggplot(loc, beta = "beta")
# 
# # add column 'typed' as a factor with levels "typed", "imputed"
# loc$data$typed <- factor(rbinom(n = nrow(loc$data), 1, 0.3), labels = c("imputed", "typed"))
# locus_ggplot(loc, shape = "typed")

## ----eval=FALSE---------------------------------------------------------------
# g <- gg_genetracks(loc)
# library(cowplot)
# plot_grid(p, p, g, ncol = 1, rel_heights = c(2, 2, 1), align = "v")
# 
# # patchwork method
# library(patchwork)
# p / p / g
# 
# # patchwork method 2
# wrap_plots(p, p, g, ncol = 1)

## ----eval=FALSE---------------------------------------------------------------
# library(cowplot)
# p1 <- locus_ggplot(loc, labels = "index", nudge_x = 0.03)
# p2 <- locus_ggplot(loc2, legend_pos = NULL)
# plot_grid(p1, p2, ncol = 2)

## ----echo=FALSE, fig.dim = c(12, 7)-------------------------------------------
if (require(EnsDb.Hsapiens.v75)) {
p1 <- locus_ggplot(loc, labels = "index", nudge_x = 0.03)
p2 <- locus_ggplot(loc2, legend_pos = NULL)
cowplot::plot_grid(p1, p2, ncol = 2)
}

## ----eval=FALSE---------------------------------------------------------------
# library(ggpubr)
# pdf("my_ggplot.pdf", width = 10)
# ggarrange(p1, p2, ncol = 2)
# dev.off()
# 
# library(gridExtra)
# pdf("my_ggplot.pdf", width = 10)
# grid.arrange(p1, p2, ncol = 2)
# dev.off()

## ----eval=FALSE---------------------------------------------------------------
# locus_plotly(loc2)

## ----out.width='70%', fig.align="center", echo=FALSE--------------------------
knitr::include_graphics("plotly.png")

## ----eval=FALSE---------------------------------------------------------------
# # FTP download full summary statistics of this SLE GWAS from
# # https://www.ebi.ac.uk/gwas/studies/GCST003156
# library(data.table)
# SLE_gwas <- fread('../bentham_2015_26502338_sle_efo0002690_1_gwas.sumstats.tsv')
# 
# pks <- quick_peak(SLE_gwas)
# ## 34 peaks found (0.328 secs)
# 
# top_snps <- SLE_gwas$rsid[pks]
# head(top_snps)
# ## [1] "rs141910407" "rs114056368" "rs4274624"   "rs17849501"  "rs1143679"   "rs114115096"

## ----eval=FALSE---------------------------------------------------------------
# all_loci <- lapply(top_snps, function(i) {
#   loc <- locus(data = SLE_gwas, index_snp = i, fix_window = 1e6,
#         ens_db = "EnsDb.Hsapiens.v75")
#   link_recomb(loc)
# })
# 
# pdf("sle_loci.pdf")
# tmp <- lapply(all_loci, locus_plot, labels = "index")
# dev.off()

## ----eval=FALSE---------------------------------------------------------------
# pp <- lapply(all_loci, locus_ggplot, labels = "index", nudge_y = 1)
# 
# library(gridExtra)
# pdf("sle_loci_gg.pdf")
# for (i in seq_along(pp)) {
#   grid.arrange(pp[[i]])
# }
# dev.off()

Try the locuszoomr package in your browser

Any scripts or data that you put into this service are public.

locuszoomr documentation built on April 12, 2025, 2:28 a.m.