View source: R/evaluateLogConDens.r
| evaluateLogConDens | R Documentation | 
Based on a "dlc" object generated by logConDens, this function computes the values of  
\widehat \phi_m(t)
\widehat f_m(t) = \exp(\widehat \phi_m(t))
\widehat F_m(t) = \int_{x_1}^t \exp(\widehat \phi_m(x)) dx
\widehat f_m^*(t) = \exp(\widehat \phi_m^*(t))
\widehat F_m^*(t) = \int_{x_1}^t \exp(\widehat \phi_m^*(x)) dx
at all real number t in xs. The exact formula for \widehat F_m and t \in [x_j,x_{j+1}] is
\widehat F_m(t)  = \widehat F_m(x_j)  + (x_{j+1}-x_j) J\Big(\widehat \phi_j, \widehat \phi_{j+1}, \frac{t-x_j}{x_{j+1}-x_j} \Big)
for the function J introduced in Jfunctions. Closed formulas can also be given for \widehat f_m^*(t)
and \widehat F_m^*(t).
evaluateLogConDens(xs, res, which = 1:5, gam = NULL, print = FALSE)
xs | 
 Vector of real numbers where the functions should be evaluated at.  | 
res | 
 An object of class   | 
which | 
 A (sub-)vector of   | 
gam | 
 Only necessary if   | 
print | 
 Progress in computation of smooth estimates is shown.  | 
Matrix with rows (x_{0, i}, \widehat \phi_m(x_{0, i}), \widehat f_m(x_{0, i}), \widehat F_m(x_{0, i}), \widehat f_m^*(x_{0, i}), \widehat F_m^*(x_{0, i}))
where x_{0,i} is the i-th entry of xs.
Kaspar Rufibach, kaspar.rufibach@gmail.com, 
 http://www.kasparrufibach.ch
Lutz Duembgen, duembgen@stat.unibe.ch, 
 https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html
## estimate gamma density
set.seed(1977)
x <- rgamma(200, 2, 1)
res <- logConDens(x, smoothed = TRUE, print = FALSE)
## compute function values at an arbitrary point
xs <- (res$x[100] + res$x[101]) / 2
evaluateLogConDens(xs, res)
## only compute function values for non-smooth estimates
evaluateLogConDens(xs, res, which = 1:3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.