| logistic4p.fp.fn | R Documentation | 
logistic4p.fp.fn is used to fit a logistic regression model with both FP and FN misclassification parameters to a binary dependent variable.
logistic4p.fp.fn(x, y, initial, max.iter = 1000, epsilon = 1e-06, detail = FALSE)
x, y | 
 x is a data frame or data matrix containing the predictor variables and y is the vector of outcomes. The number of rows in x must be the same as the length of y.  | 
initial | 
 starting values for the parameters in the model(FP,FN misclassification parameters and those in the linear predictor); if not specified, the default initials are 0 for the misclassification parameters and estimates obtained from the logistic regression for the parameters in the linear predictor.  | 
max.iter | 
 a positive integer giving the maximal number of iterations; if it is reached, the algorithm will stop.  | 
epsilon | 
 a positive convergence tolerance epsilon.  | 
detail | 
 logical indicating if the output should be printed for each iteration.  | 
estimates | 
 a named matrix of estimates including parameter estimates, standard errors, z-scores, and p-values.  | 
n.iter  | 
 an integer giving the number of iteration used  | 
d | 
 the actual max absolute difference of the parameters of the last two iterations.  | 
loglike | 
 loglikelihood evaluated at the parameter estimates.  | 
AIC | 
 Akaike Information Criterion.  | 
BIC | 
 Bayesian Information Criterion.  | 
converged | 
 logical indicating whether the current procedure converged or not.  | 
Haiyan Liu and Zhiyong Zhang
## Not run: 
data(nlsy)
y=nlsy[,1]
x=nlsy[, -1]
mod=logistic4p.fp.fn(x,y)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.