summary.oldlogspline: Logspline Density Estimation - 1992 version

Description Usage Arguments Details Author(s) References See Also Examples

View source: R/logspline.R


This function summarizes both the stepwise selection process of the model fitting by oldlogspline, as well as the final model that was selected using AIC/BIC. A logspline object was fit using the 1992 knot deletion algorithm (oldlogspline). The 1997 algorithm using knot deletion and addition is available using the logspline function.


## S3 method for class 'oldlogspline'
summary(object, ...) 
## S3 method for class 'oldlogspline'
print(x, ...)



oldlogspline object, typically the result of oldlogspline


other arguments are ignored.


These function produces the same printed output. The main body is a table with five columns: the first column is a possible number of knots for the fitted model;

the second column is the log-likelihood for the fit;

the third column is -2 * loglikelihood + penalty * (number of knots - 1), which is the AIC criterion; logspline selected the model with the smallest value of AIC;

the fourth and fifth columns give the endpoints of the interval of values of penalty that would yield the model with the indicated number of knots. (NAs imply that the model is not optimal for any choice of penalty.) At the bottom of the table the number of knots corresponding to the selected model is reported, as is the value of penalty that was used.


Charles Kooperberg


Charles Kooperberg and Charles J. Stone. Logspline density estimation for censored data (1992). Journal of Computational and Graphical Statistics, 1, 301–328.

Charles J. Stone, Mark Hansen, Charles Kooperberg, and Young K. Truong. The use of polynomial splines and their tensor products in extended linear modeling (with discussion) (1997). Annals of Statistics, 25, 1371–1470.

See Also

logspline, oldlogspline, plot.oldlogspline, doldlogspline, poldlogspline,
qoldlogspline, roldlogspline.


y <- rnorm(100)
fit <- oldlogspline(y)       

Example output

 knots  loglik    AIC minimum penalty maximum penalty
     3 -139.79 293.39            2.11             Inf
     4 -139.78 297.98              NA              NA
     5 -139.05 301.13              NA              NA
     6 -137.28 302.19              NA              NA
     7 -135.56 303.36            0.27            2.11
     8 -135.49 307.82              NA              NA
     9 -135.29 312.03            0.21            0.27
    10 -135.19 316.43            0.06            0.21
    11 -135.16 320.98            0.00            0.06
the present optimal number of knots is  3 
penalty(AIC) was the default: BIC=log(samplesize): log( 100 )= 4.61 

logspline documentation built on July 2, 2020, 4:04 a.m.