calctheta: calculates EAP theta estimates and associated standard errors

Description Usage Arguments Details Value Note Author(s) References See Also Examples

View source: R/calctheta.R

Description

Calculates Expected A Posteriori (EAP) theta estimates and associated standard error estimates (posterior standard deviations).

Usage

1
  calctheta(ipar, resp.data, theta, prior.mean = 0, prior.sd = 1, model = "GRM")

Arguments

ipar

a data frame containing the following columns: a, cb1, cb2,..., cb(maxCat)

resp.data

a data frame containing item responses

theta

a theta grid (quadrature points)

prior.mean

prior mean

prior.sd

prior standard deviation

model

IRT model, either "GRM" or "GPCM")

Details

Calculates EAP theta estimates and standard error estimates based on the input item parameters (ipar), the item response data (resp.data), and the IRT model specified ("GRM" or "GPCM").

Value

A list object with the following components

EAP

Expected A Posteriori estimates of theta

SE

Standard Error estimates

Note

Some missing item responses (NA) are allowed.

Author(s)

Seung W. Choi <choi.phd@gmail.com>

References

Bock, R. D. & Mislevy, R. J. (1982). Adaptive EAP Estimation of Ability in a Microcomputer Environment. Applied Psychological Measurement, 6(4), 431-444.

See Also

calcprob, probgrm, probgpcm

Examples

1
  ## Not run: calctheta(ipar,resp.data,model="GPCM")

Example output

Loading required package: mirt
Loading required package: stats4
Loading required package: lattice
Loading required package: rms
Loading required package: Hmisc
Loading required package: survival
Loading required package: Formula
Loading required package: ggplot2

Attaching package:HmiscThe following objects are masked frompackage:base:

    format.pval, units

Loading required package: SparseM

Attaching package:SparseMThe following object is masked frompackage:base:

    backsolve

lordif documentation built on May 2, 2019, 2:13 p.m.