Nothing
#' Print the summary of an \code{lqmix} object
#'
#' Print the summary of an object of \code{\link{class}} \code{lqmix}
#'
#' @param x a summary of an \code{lqmix} object
#' @param digits a non-null value for digits specifying the minimum number of significant digits to be printed
#' @param ... not used
#'
#' @return Return a summary of an \code{lqmix} object
#'
#' @export
print.summary.lqmix = function(x, digits = max (3, getOption("digits") -3), ...){
if(!is.null(x$call)){
if(x$model == "TC"){
cat(paste("Model: TC random coefficients with G=", x$G, " at qtl=", x$q, sep=""))
cat("\n")
cat("********************************************************", "\n")
}else if(x$model == "TV"){
cat(paste("Model: TV random coefficients with m=", x$m, " at qtl=", x$q, sep=""))
cat("\n")
cat("********************************************************", "\n")
}else{
cat(paste("Model: TC and TV random coefficients with m=", x$m, " and G=", x$G, " at qtl=", x$q, sep=""))
cat("\n")
cat("***********************************************************************", "\n")
}
}else{
if(x$model == "TC"){
cat(paste("Opt model: TC random coefficients with G=", x$G, " at qtl=", x$q, sep=""))
cat("\n")
cat("**********************************************************", "\n")
}else if(x$model == "TV"){
cat(paste("Opt model: TV random coefficients with m=", x$m, " at qtl=", x$q, sep=""))
cat("\n")
cat("**********************************************************", "\n")
}else{
cat(paste("Opt model: TC and TV random coefficients with m=", x$m, " and G=", x$G, " at qtl=", x$q, sep=""))
cat("\n")
cat("***************************************************************************", "\n")
}
}
cat("\n---- Observed process ----\n")
if(!is.null(x$fix)){
cat("\nFixed Coefficients:\n")
printCoefmat(round(x$fix, digits), P.values=TRUE, has.Pvalue=TRUE,
signif.stars = TRUE, signif.legend = F)
}
if(!is.null(x$ranTC) & !is.null(x$ranTV)){ #TCTV
cat("\nTime-Constant Random Coefficients:\n")
printCoefmat(round(x$ranTC, digits), P.values=TRUE, has.Pvalue=TRUE,
signif.stars = TRUE, signif.legend = F)
cat("\nTime-Varying Random Coefficients:\n")
printCoefmat(round(x$ranTV, digits), P.values=TRUE, has.Pvalue=TRUE,
signif.stars = TRUE, signif.legend = TRUE)
cat("\nResidual scale parameter:", round(x$scale, digits), "- Residual standard deviation:", round(x$sigma.e, digits), "\n")
cat("\n---- Latent process ----\n")
cat("\nMixture probabilities:\n")
printCoefmat(round(x$pg, digits), P.values=FALSE, has.Pvalue=FALSE,
signif.stars = FALSE, signif.legend = FALSE)
cat("\nInitial probabilities:\n")
printCoefmat(round(x$delta, digits), P.values=FALSE, has.Pvalue=FALSE,
signif.stars = FALSE, signif.legend = FALSE)
cat("\nTransition probabilities:\n")
printCoefmat(round(x$Gamma, digits), P.values=FALSE, has.Pvalue=FALSE,
signif.stars = FALSE, signif.legend = FALSE)
}else if(!is.null(x$ranTC) & is.null(x$ranTV)){ #TC
cat("\nTime-Constant Random Coefficients:\n")
printCoefmat(round(x$ranTC, digits), P.values=TRUE, has.Pvalue=TRUE,
signif.stars = TRUE, signif.legend = TRUE)
cat("\nResidual scale parameter:", round(x$scale, digits), "- Residual standard deviation:", round(x$sigma.e, digits), "\n")
cat("\n---- Latent process ----\n")
cat("\nMixture probabilities:\n")
printCoefmat(round(x$pg, digits), P.values=FALSE, has.Pvalue=FALSE,
signif.stars = FALSE, signif.legend = FALSE)
}else{ #TV
cat("\nTime-Varying Random Coefficients:\n")
printCoefmat(round(x$ranTV, digits), P.values=TRUE, has.Pvalue=TRUE,
signif.stars = TRUE, signif.legend = TRUE)
cat("\nResidual scale parameter:", round(x$scale, digits), "- Residual standard deviation:", round(x$sigma.e, digits), "\n")
cat("\n---- Latent process ----\n")
cat("\nInitial probabilities:\n")
printCoefmat(round(x$delta, digits), P.values=FALSE, has.Pvalue=FALSE,
signif.stars = FALSE, signif.legend = FALSE)
cat("\nTransition probabilities:\n")
printCoefmat(round(x$Gamma, digits), P.values=FALSE, has.Pvalue=FALSE,
signif.stars = FALSE, signif.legend = FALSE)
}
cat("\nLog-likelihood at convergence:", round(x$lk, digits))
cat("\nNumber of observations:", x$nobs, "- Number of subjects:", x$nsbjs, "\n")
if(x$miss == "non-monotone" & x$mod != "TC") message("Data affected by non-monotone missingness: parameter estimates may be biased.")
invisible(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.