Description Usage Arguments Details Value Author(s) References See Also Examples
This function implements the Baxter-King approximation to the band pass filter for a time series. The function computes cyclical and trend components of the time series using band-pass approximation for fixed and variable length filters.
1 |
x |
a regular time series |
type |
character, indicating the filter type,
|
pl |
integer. minimum period of oscillation of desired component (pl<=2). |
pu |
integer. maximum period of oscillation of desired component (2<=pl<pu<infinity). |
drift |
logical, |
nfix |
sets fixed lead/lag length or order of the filter. The
|
Almost all filters in this package can be put into the following framework. Given a time series \{x_t\}^T_{t=1} we are interested in isolating component of x_t, denoted y_t with period of oscillations between p_l and p_u, where 2 ≤ p_l < p_u < ∞.
Consider the following decomposition of the time series
x_t = y_t + \bar{x}_t
The component y_t is assumed to have power only in the frequencies in the interval \{(a,b) \cup (-a,-b)\} \in (-π, π). a and b are related to p_l and p_u by
a=\frac{2 π}{p_u}\ \ \ \ \ {b=\frac{2 π}{p_l}}
If infinite amount of data is available, then we can use the ideal bandpass filter
y_t = B(L)x_t
where the filter, B(L), is given in terms of the lag operator L and defined as
B(L) = ∑^∞_{j=-∞} B_j L^j, \ \ \ L^k x_t = x_{t-k}
The ideal bandpass filter weights are given by
B_j = \frac{\sin(jb)-\sin(ja)}{π j}
B_0=\frac{b-a}{π}
The Baxter-King filter is a finite data approximation to the ideal bandpass filter with following moving average weights
y_t = \hat{B}(L)x_t=∑^{n}_{j=-n}\hat{B}_{j} x_{t+j}=\hat{B}_0 x_t + ∑^{n}_{j=1} \hat{B}_j (x_{t-j}+x_{t+j})
where
\hat{B}_j=B_j-\frac{1}{2n+1}∑^{n}_{j=-n}B_{j}
If drift=TRUE
the drift adjusted series is obtained
\tilde{x}_{t}=x_t-t≤ft(\frac{x_{T}-x_{1}}{T-1}\right), \ \ t=0,1,…,T-1
where \tilde{x}_{t} is the undrifted series.
A "mFilter
" object (see mFilter
).
Mehmet Balcilar, mehmet@mbalcilar.net
M. Baxter and R.G. King. Measuring business cycles: Approximate bandpass filters. The Review of Economics and Statistics, 81(4):575-93, 1999.
L. Christiano and T.J. Fitzgerald. The bandpass filter. International Economic Review, 44(2):435-65, 2003.
J. D. Hamilton. Time series analysis. Princeton, 1994.
R.J. Hodrick and E.C. Prescott. Postwar US business cycles: an empirical investigation. Journal of Money, Credit, and Banking, 29(1):1-16, 1997.
R.G. King and S.T. Rebelo. Low frequency filtering and real business cycles. Journal of Economic Dynamics and Control, 17(1-2):207-31, 1993.
D.S.G. Pollock. Trend estimation and de-trending via rational square-wave filters. Journal of Econometrics, 99:317-334, 2000.
mFilter
, bwfilter
, cffilter
,
hpfilter
, trfilter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ## library(mFilter)
data(unemp)
opar <- par(no.readonly=TRUE)
unemp.bk <- bkfilter(unemp)
plot(unemp.bk)
unemp.bk1 <- bkfilter(unemp, drift=TRUE)
unemp.bk2 <- bkfilter(unemp, pl=8,pu=40,drift=TRUE)
unemp.bk3 <- bkfilter(unemp, pl=2,pu=60,drift=TRUE)
unemp.bk4 <- bkfilter(unemp, pl=2,pu=40,drift=TRUE)
par(mfrow=c(2,1),mar=c(3,3,2,1),cex=.8)
plot(unemp.bk1$x,
main="Baxter-King filter of unemployment: Trend, drift=TRUE",
col=1, ylab="")
lines(unemp.bk1$trend,col=2)
lines(unemp.bk2$trend,col=3)
lines(unemp.bk3$trend,col=4)
lines(unemp.bk4$trend,col=5)
legend("topleft",legend=c("series", "pl=2, pu=32", "pl=8, pu=40",
"pl=2, pu=60", "pl=2, pu=40"), col=1:5, lty=rep(1,5), ncol=1)
plot(unemp.bk1$cycle,
main="Baxter-King filter of unemployment: Cycle,drift=TRUE",
col=2, ylab="", ylim=range(unemp.bk3$cycle,na.rm=TRUE))
lines(unemp.bk2$cycle,col=3)
lines(unemp.bk3$cycle,col=4)
lines(unemp.bk4$cycle,col=5)
## legend("topleft",legend=c("pl=2, pu=32", "pl=8, pu=40", "pl=2, pu=60",
## "pl=2, pu=40"), col=1:5, lty=rep(1,5), ncol=1)
par(opar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.