Nothing
message("Tests for using lm")
if (interactive()) {
pkgload::load_all(".")
source(file.path(
devtools::as.package(".")["path"], "inst", "runit_tests",
"setup.R"
))
}
fake_weights <- function(df) {
df[["weights"]] <- 1
df[["weights"]][df[["x2"]] == 0] <- 0.12
return(df)
}
suppressWarnings(rm(s1, s2, s0))
data("s1", "s2", "s0", package = "maSAE")
s0$x1 <- s0$x3 <- NULL
s0 <- fake_weights(s0)
s1 <- fake_weights(s1)
s2 <- fake_weights(s2)
s12 <- bind_data(s1, s2)
s012 <- bind_data(s1, s2, s0)
tm <- data.frame(x1 = c(150, 200), x2 = c(23, 23), x3 = c(7, 7.5), g = c("a", "b"))
tm_p <- data.frame(x2 = c(23, 23), g = c("a", "b"))
test_lm_unclustered <- function() {
# % unclustered
## % un-weighted
### % two-phase
#### % partially exhaustive
object <- maSAE::saObj(data = s12, f = y ~ x1 + x2 + x3 | g, s2 = "phase2", smallAreaMeans = tm_p)
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
#### % exhaustive
object <- maSAE::saObj(data = s12, f = y ~ x1 + x2 + x3 | g, s2 = "phase2", smallAreaMeans = tm)
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
#### % non-exhaustive
object <- maSAE::saObj(data = s12, f = y ~ x1 + x2 + x3 | g, s2 = "phase2")
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
### % three-phase
object <- maSAE::saObj(data = s012, f = y ~ x1 + x2 + x3 | g, s1 = "phase1", s2 = "phase2")
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
## % weighted
### % two-phase
#### % partially exhaustive
object <- maSAE::saObj(
data = s12, f = y ~ x1 + x2 + x3 | g,
s2 = "phase2", smallAreaMeans = tm_p,
auxiliaryWeights = "weights"
)
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
#### % exhaustive
object <- maSAE::saObj(
data = s12, f = y ~ x1 + x2 + x3 | g,
s2 = "phase2", smallAreaMeans = tm,
auxiliaryWeights = "weights"
)
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
#### % non-exhaustive
object <- maSAE::saObj(
data = s12, f = y ~ x1 + x2 + x3 | g,
s2 = "phase2",
auxiliaryWeights = "weights"
)
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
### % three-phase
object <- maSAE::saObj(
data = s012, f = y ~ x1 + x2 + x3 | g,
s1 = "phase1", s2 = "phase2",
auxiliaryWeights = "weights"
)
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
}
if (interactive()) test_lm_unclustered()
test_lm_clustered <- function() {
# % clustered
## % un-weighted
### % two-phase
#### % partially exhaustive
object <- maSAE::saObj(data = s12, f = y ~ x1 + x2 + x3 | g, s2 = "phase2", smallAreaMeans = tm_p, cluster = "clustid")
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
#### % exhaustive
object <- maSAE::saObj(data = s12, f = y ~ x1 + x2 + x3 | g, s2 = "phase2", smallAreaMeans = tm, cluster = "clustid")
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
#### % non-exhaustive
object <- maSAE::saObj(data = s12, f = y ~ x1 + x2 + x3 | g, s2 = "phase2", cluster = "clustid")
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
### % three-phase
object <- maSAE::saObj(data = s012, f = y ~ x1 + x2 + x3 | g, s1 = "phase1", s2 = "phase2", cluster = "clustid")
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
## % weighted
### % two-phase
#### % partially exhaustive
object <- maSAE::saObj(
data = s12, f = y ~ x1 + x2 + x3 | g, s2 = "phase2", smallAreaMeans = tm_p, cluster = "clustid",
auxiliaryWeights = "weights"
)
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
#### % exhaustive
object <- maSAE::saObj(
data = s12, f = y ~ x1 + x2 + x3 | g, s2 = "phase2", smallAreaMeans = tm, cluster = "clustid",
auxiliaryWeights = "weights"
)
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
#### % non-exhaustive
object <- maSAE::saObj(
data = s12, f = y ~ x1 + x2 + x3 | g, s2 = "phase2", cluster = "clustid",
auxiliaryWeights = "weights"
)
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
### % three-phase
object <- maSAE::saObj(
data = s012, f = y ~ x1 + x2 + x3 | g, s1 = "phase1", s2 = "phase2", cluster = "clustid",
auxiliaryWeights = "weights"
)
out <- maSAE::predict(object, use_lm = FALSE)
outlm <- maSAE::predict(object, use_lm = TRUE)
RUnit::checkEquals(out, outlm)
}
if (interactive()) test_lm_clustered()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.