Nothing
#' @title Print an 'indirect_list' Class
#' Object
#'
#' @description Print the content of the
#' output of [many_indirect_effects()].
#'
#' @details The `print` method of the
#' `indirect_list`-class object.
#'
#' If bootstrapping confidence interval
#' was requested, this method has the
#' option to print a
#' *p*-value computed by the
#' method presented in Asparouhov and Muthén (2021).
#' Note that this *p*-value is asymmetric
#' bootstrap *p*-value based on the
#' distribution of the bootstrap estimates.
#' It is not computed based on the
#' distribution under the null hypothesis.
#'
#' For a *p*-value of *a*, it means that
#' a 100(1 - *a*)% bootstrapping confidence
#' interval
#' will have one of its limits equal to
#' 0. A confidence interval
#' with a higher confidence level will
#' include zero, while a confidence
#' interval with a lower confidence level
#' will exclude zero.
#'
#' @return `x` is returned invisibly.
#' Called for its side effect.
#'
#' @param x The output of
#' [many_indirect_effects()].
#'
#' @param digits Number of digits to
#' display. Default is 3.
#'
#' @param annotation Logical. Whether
#' the annotation after the table of
#' effects is to be printed. Default is
#' `TRUE.`
#'
#' @param pvalue Logical. If `TRUE`,
#' asymmetric *p*-values based on
#' bootstrapping will be printed if
#' available.
#'
#' @param pvalue_digits Number of decimal
#' places to display for the *p*-values.
#' Default is 3.
#'
#' @param se Logical. If `TRUE` and
#' confidence intervals are available,
#' the standard errors of the estimates
#' are also printed. They are simply the
#' standard deviations of the bootstrap
#' estimates or Monte Carlo simulated
#' values, depending on the method used
#' to form the confidence intervals.
#'
#' @param ... Other arguments. Not used.
#'
#'
#' @references
#' Asparouhov, A., & Muthén, B. (2021). Bootstrap p-value computation.
#' Retrieved from https://www.statmodel.com/download/FAQ-Bootstrap%20-%20Pvalue.pdf
#'
#'
#' @seealso [many_indirect_effects()]
#'
#' @examples
#'
#' library(lavaan)
#' data(data_serial_parallel)
#' mod <-
#' "
#' m11 ~ x + c1 + c2
#' m12 ~ m11 + x + c1 + c2
#' m2 ~ x + c1 + c2
#' y ~ m12 + m2 + m11 + x + c1 + c2
#' "
#' fit <- sem(mod, data_serial_parallel,
#' fixed.x = FALSE)
#' # All indirect paths from x to y
#' paths <- all_indirect_paths(fit,
#' x = "x",
#' y = "y")
#' paths
#' # Indirect effect estimates
#' out <- many_indirect_effects(paths,
#' fit = fit)
#' out
#'
#'
#' @export
print.indirect_list <- function(x, digits = 3,
annotation = TRUE,
pvalue = FALSE,
pvalue_digits = 3,
se = FALSE,
...) {
xold <- x
my_call <- attr(x, "call")
x_paths <- attr(x, "paths")
path_names <- names(x_paths)
wvalues <- x[[1]]$wvalues
standardized_x <- x[[1]]$standardized_x
standardized_y <- x[[1]]$standardized_y
standardized <- (standardized_x && standardized_y)
has_ci <- FALSE
ci_type <- NULL
boot_type <- NULL
if (isTRUE(!is.null(x[[1]]$boot_ci))) {
has_ci <- TRUE
ci_type <- "boot"
ind_name <- "boot_indirect"
boot_type <- x[[1]]$boot_type
if (is.null(boot_type)) boot_type <- "perc"
}
if (isTRUE(!is.null(x[[1]]$mc_ci))) {
has_ci <- TRUE
ci_type <- "mc"
ind_name <- "mc_indirect"
}
level <- x[[1]]$level
R <- ifelse(has_ci,
length(x[[1]][[ind_name]]),
NA)
# Does not support conditional indirect effects for now
# has_w <- isTRUE(!is.null(wvalues))
has_w <- FALSE
if (has_w) {
w0 <- wvalues
wnames <- names(w0)
} else {
w0 <- NA
wnames <- NA
}
# Should always have mediators
has_m <- TRUE
coef0 <- indirect_effects_from_list(xold,
add_sig = TRUE,
pvalue = pvalue,
se = se)
if (has_ci && (ci_type == "boot") && pvalue) {
coef0$pvalue <- formatC(coef0$pvalue,
digits = pvalue_digits,
format = "f")
}
if (has_ci && se) {
coef0$SE <- formatC(coef0$SE,
digits = digits,
format = "f")
}
std_str <- ""
if (standardized) {
std_str <- paste0("(Both ", "x-variable(s)",
" and ", "y-variable(s)", " Standardized)")
} else {
if (standardized_x) {
std_str <- paste0("(", "x-variable(s)", " Standardized)")
}
if (standardized_y) {
std_str <- paste0("(", "y-variable(s)", " Standardized)")
}
}
cond_str <- ""
cond_str2 <- ""
if (has_m) {
cond_str <- "indirect"
cond_str2 <- "Indirect"
}
if (has_w) {
cat("\n== Conditional", cond_str2, "Effect(s)",
std_str, " ==")
} else {
cat("\n== ", cond_str2, "Effect(s)",
std_str, " ==")
}
cat("\n")
coef1 <- data.frame(lapply(coef0, format_numeric, digits = digits))
rownames(coef1) <- rownames(coef0)
print(coef1)
if (annotation) {
if (has_ci) {
level_str <- paste0(formatC(level * 100, 1, format = "f"), "%")
cat("\n ")
tmp <- switch(ci_type,
boot = switch(boot_type,
perc = "percentile",
bc = "bias-corrected"),
mc = NULL)
tmp1 <- switch(ci_type,
boot = paste(tmp, "confidence intervals",
"by nonparametric bootstrapping with"),
mc = "Monte Carlo confidence intervals with")
tmp2 <- switch(ci_type,
boot = paste(R, "samples."),
mc = paste(R, "replications."))
cat(strwrap(paste("- [CI.lo to CI.hi] are",
level_str,
tmp1,
tmp2), exdent = 3), sep = "\n")
if (pvalue && (ci_type == "boot")) {
tmp1 <- " - [pvalue] are asymmetric bootstrap p-values."
cat(tmp1, sep = "\n")
}
if (se) {
tmp1 <- " - [SE] are standard errors."
cat(tmp1, sep = "\n")
}
} else if (has_ci && ci_type == "mc") {
level_str <- paste0(formatC(level * 100, 1, format = "f"), "%")
cat("\n ")
cat(strwrap(paste("- [CI.lo to CI.hi] are",
level_str,
"Monte Carlo confidence intervals",
"with",
R,
"replications."), exdent = 3), sep = "\n")
} else {
cat("\n")
}
if (standardized_x && standardized_y) {
cat(" - std: The standardized", cond_str, "effects.",
sep = " ")
}
if (standardized_x && !standardized_y) {
cat(" - std: The partially standardized", cond_str, "effects.",
"\n -", "x-variable(s)", "standardized.",
sep = " ")
}
if (!standardized_x && standardized_y) {
cat(" - std: The partially standardized", cond_str, "effects.",
"\n -", "y-variable(s)", "standardized.",
sep = " ")
}
if (!standardized_x && !standardized_y) {
cat(" - The 'ind' column shows the", cond_str, "effects.", sep = " ")
}
cat("\n ")
}
invisible(x)
}
#' @title Coefficient Table of an 'indirect_list' Class
#' Object
#'
#' @description Create a coefficient table
#' for the point estimates and
#' confidence intervals (if available)
#' in the
#' output of [many_indirect_effects()].
#'
#' @details
#' If bootstrapping confidence interval
#' was requested, this method has the
#' option to add
#' *p*-values computed by the
#' method presented in Asparouhov and Muthén (2021).
#' Note that these *p*-values is asymmetric
#' bootstrap *p*-values based on the
#' distribution of the bootstrap estimates.
#' They are not computed based on the
#' distribution under the null hypothesis.
#'
#' For a *p*-value of *a*, it means that
#' a 100(1 - *a*)% bootstrapping confidence
#' interval
#' will have one of its limits equal to
#' 0. A confidence interval
#' with a higher confidence level will
#' include zero, while a confidence
#' interval with a lower confidence level
#' will exclude zero.
#'
#'
#' @return A data frame with the
#' indirect effect estimates and
#' confidence intervals (if available).
#' It also has A string column, `"Sig"`,
#' for #' significant test results
#' if `add_sig` is `TRUE` and
#' confidence intervals are available.
#'
#' @param object The output of
#' [indirect_effect()] or
#' [cond_indirect()].
#'
#' @param add_sig Whether a column
#' of significance test results
#' will be added. Default is `TRUE`.
#'
#' @param pvalue Logical. If `TRUE`,
#' asymmetric *p*-values based on
#' bootstrapping will be added
#' available. Default is `FALSE`.
#'
#' @param se Logical. If `TRUE` and
#' confidence intervals are available,
#' the standard errors of the estimates
#' are also added. They are simply the
#' standard deviations of the bootstrap
#' estimates or Monte Carlo simulated
#' values, depending on the method used
#' to form the confidence intervals.
#'
#' @seealso [many_indirect_effects()]
#'
#'
#' @references
#' Asparouhov, A., & Muthén, B. (2021). Bootstrap p-value computation.
#' Retrieved from https://www.statmodel.com/download/FAQ-Bootstrap%20-%20Pvalue.pdf
#'
#' @examples
#'
#' library(lavaan)
#' data(data_serial_parallel)
#' mod <-
#' "
#' m11 ~ x + c1 + c2
#' m12 ~ m11 + x + c1 + c2
#' m2 ~ x + c1 + c2
#' y ~ m12 + m2 + m11 + x + c1 + c2
#' "
#' fit <- sem(mod, data_serial_parallel,
#' fixed.x = FALSE)
#'
#' # All indirect paths from x to y
#' paths <- all_indirect_paths(fit,
#' x = "x",
#' y = "y")
#' paths
#'
#' # Indirect effect estimates
#' out <- many_indirect_effects(paths,
#' fit = fit)
#' out
#'
#' # Create a data frame of the indirect effect estimates
#'
#' out_df <- indirect_effects_from_list(out)
#' out_df
#'
#'
#' @export
indirect_effects_from_list <- function(object,
add_sig = TRUE,
pvalue = FALSE,
se = FALSE) {
if (!inherits(object, "indirect_list")) {
stop("object is not an indirect_list class object.")
}
my_call <- attr(object, "call")
x_paths <- attr(object, "paths")
path_names <- names(x_paths)
wvalues <- object[[1]]$wvalues
standardized_x <- object[[1]]$standardized_x
standardized_y <- object[[1]]$standardized_y
standardized <- (standardized_x && standardized_y)
coef0 <- sapply(object, stats::coef)
if (standardized_x || standardized_x) {
out <- data.frame(std = coef0)
} else {
out <- data.frame(ind = coef0)
}
rownames(out) <- path_names
has_ci <- FALSE
ci_type <- NULL
if (isTRUE(!is.null(object[[1]]$boot_ci))) {
has_ci <- TRUE
ci_type <- "boot"
se_name <- "boot_se"
}
if (isTRUE(!is.null(object[[1]]$mc_ci))) {
has_ci <- TRUE
ci_type <- "mc"
se_name <- "mc_se"
}
if (has_ci) {
ci0 <- t(sapply(object, stats::confint))
out$CI.lo <- ci0[, 1]
out$CI.hi <- ci0[, 2]
if (add_sig) {
Sig <- ifelse((out$CI.lo > 0) | (out$CI.hi < 0), "Sig", "")
out$Sig <- Sig
}
if (pvalue && (ci_type == "boot")) {
boot_p <- sapply(object, function(x) x$boot_p)
boot_p <- unname(boot_p)
out$pvalue <- boot_p
}
if (se) {
est_se <- sapply(object, function(x) x[[se_name]])
est_se <- unname(est_se)
out$SE <- est_se
}
}
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.