sanitize_model_specific.glimML | R Documentation |
Method to raise model-specific warnings and errors
## S3 method for class 'glimML'
sanitize_model_specific(model, ...)
## S3 method for class 'betareg'
sanitize_model_specific(model, ...)
sanitize_model_specific(model, ...)
## Default S3 method:
sanitize_model_specific(
model,
vcov = NULL,
calling_function = "marginaleffects",
...
)
## S3 method for class 'brmsfit'
sanitize_model_specific(model, ...)
## S3 method for class 'bart'
sanitize_model_specific(model, ...)
## S3 method for class 'glmmTMB'
sanitize_model_specific(model, vcov = TRUE, re.form = NULL, ...)
## S3 method for class 'merMod'
sanitize_model_specific(model, re.form = NULL, ...)
## S3 method for class 'mblogit'
sanitize_model_specific(model, calling_function = "marginaleffects", ...)
## S3 method for class 'mlogit'
sanitize_model_specific(model, newdata, ...)
## S3 method for class 'clm'
sanitize_model_specific(model, ...)
## S3 method for class 'plm'
sanitize_model_specific(model, ...)
## S3 method for class 'plm'
sanitize_model_specific(model, ...)
## S3 method for class 'rqs'
sanitize_model_specific(model, ...)
## S3 method for class 'svyolr'
sanitize_model_specific(model, wts = FALSE, by = FALSE, ...)
## S3 method for class 'svyglm'
sanitize_model_specific(model, wts = FALSE, by = FALSE, ...)
model |
Model object |
... |
Additional arguments are passed to the |
vcov |
Type of uncertainty estimates to report (e.g., for robust standard errors). Acceptable values:
|
newdata |
Grid of predictor values at which we evaluate the slopes.
|
wts |
logical, string or numeric: weights to use when computing average predictions, contrasts or slopes. These weights only affect the averaging in
|
by |
Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:
|
A warning, an error, or nothing
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.