negbin.rel.pca: Relative Likelihood based PCA assuming Negative Binomial...

Description Usage Arguments Details Value Note Author(s) References Examples

Description

The function performs PCA on matrix based on weighted relative likelihood function and provides a plot of first two PCs as well as summary of PCA.

Usage

1
negbin.rel.pca(x, mu.min, mu.max, len = 200, plot = TRUE, seed = 132)

Arguments

x

Observations of length greater than 1. Data can be entered as matrix or list.

mu.min

Minimum value of mean for the relative likelihood function.

mu.max

Maximum value of mean for the relative likelihood function.

len

Length of values to be evaluated at in between mu.min and mu.max.

plot

If set TRUE, provides plot of weighted relative likelihood functions colored by their cluster assignment.

seed

Seed to be set for reproducibility

Details

For mathematical details, please contact the authors.

Value

PCA.output

Summary of Principal Component Analysis.

Note

None.

Author(s)

Milan Bimali.

References

None.

Examples

1
2
x <- sim.negbin(c(4,5,10),3,10,12)
negbin.rel.pca(x,1,20,len=20,plot=TRUE,seed=132)

marl documentation built on May 1, 2019, 9:17 p.m.