Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----readindata, message = FALSE----------------------------------------------
library(mars)
becker09 <- na.omit(becker09) # ommiting studies with NA
## ----convert_data-------------------------------------------------------------
becker09_list <- df_to_corr(becker09,
variables = c('Cognitive_Performance',
'Somatic_Performance',
'Selfconfidence_Performance',
'Somatic_Cognitive',
'Selfconfidence_Cognitive',
'Selfconfidence_Somatic'),
ID = 'ID')
## ----os-----------------------------------------------------------------------
#olkin_siotani(becker09_list, becker09$N, type = 'simple')
#olkin_siotani(becker09_list, becker09$N, type = 'average')
olkin_siotani(becker09_list, becker09$N, type = 'weighted')
## ----prep_data, eval = FALSE--------------------------------------------------
# mars(data = becker09, studyID = 'ID',
# effectID = 'numID', sample_size = 'N',
# effectsize_type = 'cor',
# estimation_method = 'FE',
# varcov_type = 'weighted',
# variable_names = c('Cognitive_Performance', 'Somatic_Performance',
# 'Selfconfidence_Performance',
# 'Somatic_Cognitive',
# 'Selfconfidence_Cognitive',
# 'Selfconfidence_Somatic')) |>
# summary()
## ----random-effect------------------------------------------------------------
model_out_random <- mars(data = becker09, studyID = 'ID',
effectID = 'numID', sample_size = 'N',
effectsize_type = 'cor',
varcov_type = 'weighted',
variable_names = c('Cognitive_Performance', 'Somatic_Performance',
'Selfconfidence_Performance',
'Somatic_Cognitive',
'Selfconfidence_Cognitive',
'Selfconfidence_Somatic'))
summary(model_out_random)
## ----model_path---------------------------------------------------------------
model <- "## Regression paths
Performance ~ Cognitive + Somatic + Selfconfidence
Selfconfidence ~ Cognitive + Somatic
"
mars(data = becker09, studyID = 'ID',
effectID = 'numID', sample_size = 'N',
effectsize_type = 'cor',
varcov_type = 'weighted',
variable_names = c('Cognitive_Performance', 'Somatic_Performance',
'Selfconfidence_Performance',
'Somatic_Cognitive',
'Selfconfidence_Cognitive',
'Selfconfidence_Somatic')) |>
path_model(model = model) |>
summary()
## ----team---------------------------------------------------------------------
becker09_T <- subset(becker09, becker09$Team == "T")
## ----prep_data2---------------------------------------------------------------
mars(data = becker09_T, studyID = 'ID',
effectID = 'numID', sample_size = 'N',
effectsize_type = 'cor',
varcov_type = 'weighted',
variable_names = c('Cognitive_Performance', 'Somatic_Performance',
'Selfconfidence_Performance',
'Somatic_Cognitive',
'Selfconfidence_Cognitive',
'Selfconfidence_Somatic')) |>
summary()
# random_model2 <- fit_model(data = input_metafor2, effect_size = 'yi',
# var_cor = 'V', moderators = ~ -1 + factor(outcome),
# random_params = ~ factor(outcome) | factor(study))
## ----model_path2--------------------------------------------------------------
model <- "## Regression paths
Performance ~ Cognitive + Somatic + Selfconfidence
Selfconfidence ~ Cognitive + Somatic
"
mars(data = becker09_T, studyID = 'ID',
effectID = 'numID', sample_size = 'N',
effectsize_type = 'cor',
varcov_type = 'weighted',
variable_names = c('Cognitive_Performance', 'Somatic_Performance',
'Selfconfidence_Performance',
'Somatic_Cognitive',
'Selfconfidence_Cognitive',
'Selfconfidence_Somatic')) |>
path_model(model = model) |>
summary()
## ----Indiv--------------------------------------------------------------------
becker09_I <- subset(becker09, becker09$Team == "I")
## ----prep_data3---------------------------------------------------------------
mars(data = becker09_I, studyID = 'ID',
effectID = 'numID', sample_size = 'N',
effectsize_type = 'cor',
varcov_type = 'weighted',
variable_names = c('Cognitive_Performance', 'Somatic_Performance',
'Selfconfidence_Performance',
'Somatic_Cognitive',
'Selfconfidence_Cognitive',
'Selfconfidence_Somatic')) |>
summary()
# random_model3 <- fit_model(data = input_metafor3, effect_size = 'yi',
# var_cor = 'V', moderators = ~ -1 + factor(outcome),
# random_params = ~ factor(outcome) | factor(study))
## ----model_path3--------------------------------------------------------------
model <- "## Regression paths
Performance ~ Cognitive + Somatic + Selfconfidence
Selfconfidence ~ Cognitive + Somatic
"
mars(data = becker09_I, studyID = 'ID',
effectID = 'numID', sample_size = 'N',
effectsize_type = 'cor',
varcov_type = 'weighted',
variable_names = c('Cognitive_Performance', 'Somatic_Performance',
'Selfconfidence_Performance',
'Somatic_Cognitive',
'Selfconfidence_Cognitive',
'Selfconfidence_Somatic')) |>
path_model(model = model) |>
summary()
## ----pipe, eval = FALSE-------------------------------------------------------
# # partial corr matrix
# part_cor <- round(corpcor::vec2sm(model_out_random$beta_r),3)
# diag(part_cor) <- 1
# part_cor
#
# # var-cov matrix of partials
# Psy <- model_out_random$varcov_beta
# round(var_path(model_out_random$beta_r, Psy, type = 'pcor'), 4)
## ----partial, eval = FALSE----------------------------------------------------
# #---------------------------------------------------------------------
# # Create a data set with 8 complete studies
# #---------------------------------------------------------------------
# R <- becker09_list
# R$"6" <- NULL
# R$"17" <- NULL
# n <- becker09$N[c(-3, -5)]
# #------------------------------------------------------------------
# # first replace NA by zeros
# RR <- R # redifine list
#
# PR <- lapply(RR, cor2pcor)
# pr <- unlist(lapply(PR, '[[', 4))
# var_pr <- (1-pr^2)^2 / (n - 3 -1)
#
# rma.uni(pr, var_pr)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.