README.md

matrixCorr

R-CMD-check.yaml Codecov test
coverage

matrixCorr is a lightweight, high-performance package for computing correlation matrices in R. Numerically robust estimates for:

Designed for large matrices and tie-heavy data, matrixCorr accepts matrices or data frames, returns symmetric correlation matrices with metadata, and includes convenient print() and plot() methods for quick inspection.

Features

Installation

# Install from GitHub
# install.packages("devtools")
devtools::install_github("Prof-ThiagoOliveira/matrixCorr")

Example

Kendall’s Tau Example

library(matrixCorr)

# Simulated data
set.seed(42)
mat <- cbind(A = rnorm(100), B = rnorm(100), C = rnorm(100))

# Compute Kendall's tau correlation matrix
ktau <- kendall_tau(mat)

# Print matrix
print(ktau)

# Visualize with ggplot2
plot(ktau)

Spearman’s Rho Example

library(matrixCorr)

# Simulated data with some ties
set.seed(123)
mat <- cbind(
  A = sample(1:10, 100, replace = TRUE),
  B = sample(1:10, 100, replace = TRUE),
  C = rnorm(100)
)

# Compute Spearman's rho correlation matrix
spearman <- spearman_rho(mat)

# Print matrix
print(spearman)

# Visualize with ggplot2
plot(spearman)

Pearson Correlation Example

library(matrixCorr)

# Simulated continuous data
set.seed(999)
mat <- cbind(
  A = rnorm(100),
  B = 0.5 * rnorm(100) + 0.5,
  C = runif(100)
)

# Compute Pearson correlation matrix
pcorr <- pearson_corr(mat)

# Print matrix
print(pcorr)

# Visualize with ggplot2
plot(pcorr)

License

MIT Thiago de Paula Oliveira

See inst/LICENSE for the full MIT license text.



Try the matrixCorr package in your browser

Any scripts or data that you put into this service are public.

matrixCorr documentation built on Aug. 26, 2025, 5:07 p.m.