matrixCorr-internal | R Documentation |
Compute correlation and other association matrices from small to very large datasets with simple, 'cor()'-like functions and sensible defaults. Includes options for shrinkage and robustness to improve results in noisy or high-dimensional settings (p >= n), plus convenient print/plot methods for inspection. Implemented with optimised 'C++' backends using 'BLAS'/'OpenMP' and memory-aware symmetric updates. Works with base matrices and data frames, returning standard 'R' objects via a consistent S3 interface. Useful across genomics, agriculture, and machine-learning workflows. Methods based on Ledoit and Wolf (2004) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/S0047-259X(03)00096-4")}; Schäfer and Strimmer (2005) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2202/1544-6115.1175")}; Lin (1989) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/2532051")}.
Validates and normalizes input for correlation computations. Accepts either a numeric matrix or a data frame, filters numeric columns, checks dimensions and missing values, and returns a numeric (double) matrix with preserved column names.
validate_corr_input(data)
data |
A matrix or data frame. Non-numeric columns are dropped (data.frame path). For matrix input, storage mode must be integer or double. |
Rules enforced:
Input must be a matrix or data.frame.
Only numeric (integer or double) columns are retained (data.frame path).
At least two numeric columns are required.
All columns must have the same length and \ge
2 observations.
Missing values are not allowed.
Returns a double
matrix; integer input is converted once.
A numeric matrix (type double
) with column names preserved.
Maintainer: Thiago de Paula Oliveira toliveira@abacusbio.com (ORCID)
Thiago de Paula Oliveira
Useful links:
Report bugs at https://github.com/Prof-ThiagoOliveira/matrixCorr/issues
pearson_corr()
, spearman_rho()
, kendall_tau()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.