Description Usage Format Source References Examples
A data frame with gene expression data from DLBCL (diffuse large B-cell lymphoma) patients.
1 | data("DLBCL")
|
DLCLid
DLBCL identifier
GEG
Gene Expression Group
time
survival time in month
cens
censoring: 0 cencored, 1 dead
IPI
International Prognostic Index
MGE
Mean Gene Expression
Except of MGE
, the data is published at
http://llmpp.nih.gov/lymphoma/data.shtml. MGE
is the mean of
the gene expression.
Ash A. Alizadeh et. al (2000), Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 504–509
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | library("survival")
set.seed(29)
# compute the cutpoint and plot the empirical process
mod <- maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL, smethod="LogRank")
print(mod)
## Not run:
# postscript("statDLBCL.ps", horizontal=F, width=8, height=8)
pdf("statDLBCL.pdf", width=8, height=8)
## End(Not run)
par(mai=c(1.0196235, 1.0196235, 0.8196973, 0.4198450))
plot(mod, cex.lab=1.6, cex.axis=1.6, xlab="Mean gene expression",lwd=2)
## Not run:
dev.off()
## End(Not run)
# significance of the cutpoint
# limiting distribution
maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL,
smethod="LogRank", pmethod="Lau92", iscores=TRUE)
# improved Bonferroni inequality, plot with significance bound
maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL,
smethod="LogRank", pmethod="Lau94", iscores=TRUE)
mod <- maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL, smethod="LogRank",
pmethod="Lau94", alpha=0.05)
plot(mod, xlab="Mean gene expression")
## Not run:
# postscript(file="RNewsStat.ps",horizontal=F, width=8, height=8)
pdf("RNewsStat.pdf", width=8, height=8)
## End(Not run)
par(mai=c(1.0196235, 1.0196235, 0.8196973, 0.4198450))
plot(mod, xlab="Mean gene expression", cex.lab=1.6, cex.axis=1.6)
## Not run:
dev.off()
## End(Not run)
# small sample solution Hothorn & Lausen
maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL,
smethod="LogRank", pmethod="HL")
# normal approximation
maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL,
smethod="LogRank", pmethod="exactGauss", iscores=TRUE,
abseps=0.01)
# conditional Monte-Carlo
maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL,
smethod="LogRank", pmethod="condMC", B = 9999)
# survival analysis and plotting like in Alizadeh et al. (2000)
splitGEG <- rep(1, nrow(DLBCL))
DLBCL <- cbind(DLBCL, splitGEG)
DLBCL$splitGEG[DLBCL$GEG == "Activated B-like"] <- 0
plot(survfit(Surv(time, cens) ~ splitGEG, data=DLBCL),
xlab="Survival time in month", ylab="Probability")
text(90, 0.7, "GC B-like")
text(60, 0.3, "Activated B-like")
splitIPI <- rep(1, nrow(DLBCL))
DLBCL <- cbind(DLBCL, splitIPI)
DLBCL$splitIPI[DLBCL$IPI <= 2] <- 0
plot(survfit(Surv(time, cens) ~ splitIPI, data=DLBCL),
xlab="Survival time in month", ylab="Probability")
text(90, 0.7, "Low clinical risk")
text(60, 0.25, "High clinical risk")
# survival analysis using the cutpoint
splitMGE <- rep(1, nrow(DLBCL))
DLBCL <- cbind(DLBCL, splitMGE)
DLBCL$splitMGE[DLBCL$MGE <= mod$estimate] <- 0
## Not run:
# postscript("survDLBCL.ps",horizontal=F, width=8, height=8)
pdf("survDLBCL.pdf", width=8, height=8)
## End(Not run)
par(mai=c(1.0196235, 1.0196235, 0.8196973, 0.4198450))
plot(survfit(Surv(time, cens) ~ splitMGE, data=DLBCL),
xlab = "Survival time in month",
ylab="Probability", cex.lab=1.6, cex.axis=1.6, lwd=2)
text(90, 0.9, expression("Mean gene expression" > 0.186), cex=1.6)
text(90, 0.45, expression("Mean gene expression" <= 0.186 ), cex=1.6)
## Not run:
dev.off()
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.