Description Usage Arguments Details Value References Examples
Correlation matrix of maximally selected rank statistics.
1 | corrmsrs(X, minprop=0.1, maxprop=0.9)
|
X |
the vector, matrix or data.frame of prognostic factors under test. |
minprop |
at least |
maxprop |
not more than |
The correlations between all two-sample rank statistics induced by all
possible cutpoints in X
are computed.
The correlation matrix with dimension depending on ties in X
is
returned.
Hothorn, T. and Lausen, B. (2003). On the Exact Distribution of Maximally Selected Rank Statistics. Computational Statistics & Data Analysis, 43, 121–137.
Lausen, B., Hothorn, T., Bretz, F. and Schmacher, M. (2004). Assessment of Optimally Selected Prognostic Factors. Biometrical Journal, 46(3), 364–374.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | set.seed(29)
# matrix of hypothetical prognostic factors
X <- matrix(rnorm(30), ncol=3)
# this function
a <- corrmsrs(X, minprop=0, maxprop=0.999)
# coded by just typing the definition of the correlation
testcorr <- function(X) {
wh <- function(cut, x)
which(x <= cut)
index <- function(x) {
ux <- unique(x)
ux <- ux[ux < max(ux)]
lapply(ux, wh, x = x)
}
a <- unlist(test <- apply(X, 2, index), recursive=FALSE)
cnull <- rep(0, nrow(X))
mycorr <- diag(length(a))
for (i in 1:(length(a)-1)) {
for (j in (i+1):length(a)) {
cone <- cnull
cone[a[[i]]] <- 1
ctwo <- cnull
ctwo[a[[j]]] <- 1
sone <- sqrt(sum((cone - mean(cone))^2))
stwo <- sqrt(sum((ctwo - mean(ctwo))^2))
tcorr <- sum((cone - mean(cone))*(ctwo - mean(ctwo)))
tcorr <- tcorr/(sone * stwo)
mycorr[i,j] <- tcorr
}
}
mycorr
}
tc <- testcorr(X)
tc <- tc + t(tc)
diag(tc) <- 1
stopifnot(all.equal(tc, a))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.