Nothing
#' Multi-calibration pipeline
#'
#' Wraps MCBoost in a Pipeline to be used with `mlr3pipelines`.
#' For now this assumes training on the same dataset that is later used
#' for multi-calibration.
#' @param learner (mlr3)[`mlr3::Learner`]\cr
#' Initial learner. Internally wrapped into a `PipeOpLearnerCV`
#' with `resampling.method = "insample"` as a default.
#' All parameters can be adjusted through the resulting Graph's `param_set`.
#' Defaults to `lrn("classif.featureless")`.
#' Note: An initial predictor can also be supplied via the `init_predictor` parameter.
#' @param param_vals `list` \cr
#' List of parameter values passed on to `MCBoost$new`.
#' @return (mlr3pipelines) [`Graph`][mlr3pipelines::Graph]
#' @examples
#' \dontrun{
#' library("mlr3pipelines")
#' gr = ppl_mcboost()
#' }
#' @export
ppl_mcboost = function(learner = lrn("classif.featureless"), param_vals = list()) {
mlr3misc::require_namespaces("mlr3pipelines")
po_lrn = mlr3pipelines::po("learner_cv", learner = learner, resampling.method = "insample")
gr = mlr3pipelines::`%>>%`(
mlr3pipelines::gunion(list(
"data" = mlr3pipelines::po("nop"),
"prediction" = po_lrn
)),
PipeOpMCBoost$new(param_vals = param_vals)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.