rw_graph: Create random walk graph

Description Usage Arguments Value References Examples

Description

Create a random walk graph from verbal fluency data that includes edges for words that occur within a window size of 1.

Usage

1
rw_graph(dat)

Arguments

dat

list of character vectors containing the fluency productions.

Value

A matrix

References

Wulff, D. U., Hills, T., & Mata, R. (2018, October 29). Structural differences in the semantic networks of younger and older adults. https://doi.org/10.31234/osf.io/s73dp

Zemla, J. C., & Austerweil, J. L. (2018). Estimating semantic networks of groups and individuals from fluency data. Computational Brain & Behavior, 1-23.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
# get animal fluency data
data(animal_fluency)

# infer influence network
inferred_network = rw_graph(animal_fluency)

# Simulate -----

# generate watts strogatz graph
network = grow_ws(n = 200, k = 10, p = .5)

# generate fluency data
# sets string equal TRUE as community_graph expects mode character
fluency_data = fluency(get_adjlist(network), rep(10, 100), string = TRUE)

# infer fluency network
inferred_network = rw_graph(fluency_data)

memnet documentation built on May 2, 2019, 9:35 a.m.