influence.rma.mv | R Documentation |
Functions to compute various outlier and influential study diagnostics (some of which indicate the influence of deleting one study at a time on the model fit or the fitted/residual values) for objects of class "rma.mv"
. \loadmathjax
## S3 method for class 'rma.mv'
cooks.distance(model, progbar=FALSE, cluster,
reestimate=TRUE, parallel="no", ncpus=1, cl, ...)
## S3 method for class 'rma.mv'
dfbetas(model, progbar=FALSE, cluster,
reestimate=TRUE, parallel="no", ncpus=1, cl, ...)
## S3 method for class 'rma.mv'
hatvalues(model, type="diagonal", ...)
model |
an object of class |
progbar |
logical to specify whether a progress bar should be shown (the default is |
cluster |
optional vector to specify a clustering variable to use for computing the Cook's distances or DFBETAS values. If unspecified, these measures are computed for the individual observed effect sizes or outcomes. |
reestimate |
logical to specify whether variance/correlation components should be re-estimated after deletion of the \mjeqni\textrmthith case (the default is |
parallel |
character string to specify whether parallel processing should be used (the default is |
ncpus |
integer to specify the number of processes to use in the parallel processing. |
cl |
optional cluster to use if |
type |
character string to specify whether only the diagonal of the hat matrix ( |
... |
other arguments. |
The term ‘case’ below refers to a particular row from the dataset used in the model fitting (when argument cluster
is not specified) or each level of the variable specified via cluster
.
Cook's distance for the \mjeqni\textrmthith case can be interpreted as the Mahalanobis distance between the entire set of predicted values once with the \mjeqni\textrmthith case included and once with the \mjeqni\textrmthith case excluded from the model fitting.
The DFBETAS value(s) essentially indicate(s) how many standard deviations the estimated coefficient(s) change(s) after excluding the \mjeqni\textrmthith case from the model fitting.
The cooks.distance
function returns a vector. The dfbetas
function returns a data frame. The hatvalues
function returns either a vector with the diagonal elements of the hat matrix or the entire hat matrix.
The variable specified via cluster
is assumed to be of the same length as the data originally passed to the rma.mv
function (and if the data
argument was used in the original model fit, then the variable will be searched for within this data frame first). Any subsetting and removal of studies with missing values that was applied during the model fitting is also automatically applied to the variable specified via the cluster
argument.
Leave-one-out diagnostics are calculated by refitting the model \mjseqnk times (where \mjseqnk denotes the number of cases). Depending on how large \mjseqnk is, it may take a few moments to finish the calculations. For complex models fitted with rma.mv
, this can become computationally expensive.
On machines with multiple cores, one can try to speed things up by delegating the model fitting to separate worker processes, that is, by setting parallel="snow"
or parallel="multicore"
and ncpus
to some value larger than 1. Parallel processing makes use of the parallel
package, using the makePSOCKcluster
and parLapply
functions when parallel="snow"
or using mclapply
when parallel="multicore"
(the latter only works on Unix/Linux-alikes). With parallel::detectCores()
, one can check on the number of available cores on the local machine.
Alternatively (or in addition to using parallel processing), one can also set reestimate=FALSE
, in which case any variance/correlation components in the model are not re-estimated after deleting the \mjeqni\textrmthith case from the dataset. Doing so only yields an approximation to the Cook's distances and DFBETAS values that ignores the influence of the \mjeqni\textrmthith case on the variance/correlation components, but is considerably faster (and often yields similar results).
It may not be possible to fit the model after deletion of the \mjeqni\textrmthith case from the dataset. This will result in NA
values for that case.
Wolfgang Viechtbauer wvb@metafor-project.org https://www.metafor-project.org
Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics. New York: Wiley.
Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. London: Chapman and Hall.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48. https://doi.org/10.18637/jss.v036.i03
Viechtbauer, W. (2021). Model checking in meta-analysis. In C. H. Schmid, T. Stijnen, & I. R. White (Eds.), Handbook of meta-analysis (pp. 219–254). Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781315119403
Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. Research Synthesis Methods, 1(2), 112–125. https://doi.org/10.1002/jrsm.11
rstudent
for externally standardized residuals and weights
for model fitting weights.
### copy data from Konstantopoulos (2011) into 'dat'
dat <- dat.konstantopoulos2011
### multilevel random-effects model
res <- rma.mv(yi, vi, random = ~ 1 | district/school, data=dat)
print(res, digits=3)
### Cook's distance for each observed outcome
x <- cooks.distance(res)
x
plot(x, type="o", pch=19, xlab="Observed Outcome", ylab="Cook's Distance")
### Cook's distance for each district
x <- cooks.distance(res, cluster=district)
x
plot(x, type="o", pch=19, xlab="District", ylab="Cook's Distance", xaxt="n")
axis(side=1, at=seq_along(x), labels=as.numeric(names(x)))
### hat values
hatvalues(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.