Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----echo = FALSE-------------------------------------------------------------
options(crayon.enabled = FALSE, cli.num_colors = 0)
## ----eval = FALSE-------------------------------------------------------------
# library(metasnf)
#
# # First imputed dataset
# dl_imp1 <- data_list(
# list(subc_v, "subcortical_volume", "neuroimaging", "continuous"),
# list(income, "household_income", "demographics", "continuous"),
# list(pubertal, "pubertal_status", "demographics", "continuous"),
# list(anxiety, "anxiety", "behaviour", "ordinal"),
# list(depress, "depressed", "behaviour", "ordinal"),
# uid = "unique_id"
# )
#
# # Second imputed dataset
# dl_imp2 <- data_list(
# list(subc_v, "subcortical_volume", "neuroimaging", "continuous"),
# list(income, "household_income", "demographics", "continuous"),
# list(pubertal, "pubertal_status", "demographics", "continuous"),
# list(anxiety, "anxiety", "behaviour", "ordinal"),
# list(depress, "depressed", "behaviour", "ordinal"),
# uid = "unique_id"
# )
#
# set.seed(42)
# sc <- snf_config(
# dl = dl_imp1,
# n_solutions = 10,
# min_k = 20,
# max_k = 50
# )
#
# # Generation of 20 cluster solutions
# sol_df_imp1 <- batch_snf(dl_imp1, sc)
# sol_df_imp2 <- batch_snf(dl_imp2, sc)
#
# nrow(sol_df_imp1)
# nrow(sol_df_imp1)
#
# # Create a stacked solution matrix that stores solutions from both imputations
# # Solutions 1:10 are for imputation 1, 11:20 are for imputation 2
# sol_df <- rbind(sol_df_imp1, sol_df_imp2, reset_indices = TRUE)
#
# sol_df
#
# # Calculate pairwise similarities across all solutions
# # (Including across imputations)
# sol_aris <- calc_aris(sol_df)
#
# meta_cluster_order <- get_matrix_order(sol_aris)
#
# # Base heatmap for identifying meta clusters
# ari_hm <- meta_cluster_heatmap(
# sol_aris,
# order = meta_cluster_order
# )
#
# # Identify meta cluster boundaries
# shiny_annotator(ari_hm)
#
# split_vec <- c(7, 13)
#
# ari_mc_hm <- meta_cluster_heatmap(
# sol_aris,
# order = meta_cluster_order,
# split_vector = split_vec
# )
#
# # Calculate how features are distributed across solutions
# ext_sol_df_imp1 <- extend_solutions(
# sol_df,
# target_dl = dl_imp1
# )
## ----eval = FALSE-------------------------------------------------------------
# annotation_data <- as.data.frame(ext_sol_df_imp1, keep_attributes = TRUE)
# annotation_data$"imputation" <- c(rep("imp_1", 10), rep("imp_2", 10))
#
# # Visualize influence of imputation on meta clustering results
# annotated_ari_hm <- meta_cluster_heatmap(
# sol_aris,
# order = meta_cluster_order,
# split_vector = split_vec,
# data = annotation_data,
# top_hm = list(
# "Depression p-value" = "cbcl_depress_r_pval",
# "Anxiety p-value" = "cbcl_anxiety_r_pval"
# ),
# left_hm = list(
# "Imputation" = "imputation"
# ),
# annotation_colours = list(
# "Depression p-value" = colour_scale(
# annotation_data$"cbcl_depress_r_pval",
# min_colour = "purple",
# max_colour = "black"
# ),
# "Anxiety p-value" = colour_scale(
# annotation_data$"cbcl_anxiety_r_pval",
# min_colour = "green",
# max_colour = "black"
# ),
# "Imputation" = c(
# "imp_1" = "orange",
# "imp_2" = "blue"
# )
# )
# )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.