Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----echo = FALSE-------------------------------------------------------------
options(crayon.enabled = FALSE, cli.num_colors = 0)
## ----eval = FALSE-------------------------------------------------------------
# library(metasnf)
#
# # Start by making a data list containing all our data frames to more easily
# # identify observations without missing data
# full_dl <- data_list(
# list(subc_v, "subcortical_volume", "neuroimaging", "continuous"),
# list(income, "household_income", "demographics", "continuous"),
# list(pubertal, "pubertal_status", "demographics", "continuous"),
# list(anxiety, "anxiety", "behaviour", "ordinal"),
# list(depress, "depressed", "behaviour", "ordinal"),
# uid = "unique_id"
# )
#
# # Partition into a data and target list (optional)
# dl <- full_dl[1:3]
# target_dl <- full_dl[4:5]
#
# # Build space of settings to cluster over
# set.seed(42)
# sc <- snf_config(
# dl = dl,
# n_solutions = 20,
# min_k = 20,
# max_k = 50
# )
#
# # Clustering
# sol_df <- batch_snf(dl, sc)
#
# # Calculate p-values between cluster solutions and features
# ext_sol_df <- extend_solutions(
# sol_df,
# dl = dl,
# target = target_dl,
# min_pval = 1e-10 # p-values below 1e-10 will be thresholded to 1e-10
# )
## ----eval = FALSE-------------------------------------------------------------
# esm_manhattan <- esm_manhattan_plot(
# ext_sol_df[1:5, ],
# neg_log_pval_thresh = 5,
# threshold = 0.05,
# point_size = 3,
# jitter_width = 0.1,
# jitter_height = 0.1,
# plot_title = "Feature-Solution Associations",
# text_size = 14,
# bonferroni_line = TRUE
# )
## ----eval = FALSE, echo = FALSE-----------------------------------------------
# ggplot2::ggsave(
# "vignettes/esm_manhattan.png",
# esm_manhattan,
# height = 5,
# width = 8,
# dpi = 100
# )
## ----eval = FALSE-------------------------------------------------------------
# # Calculate pairwise similarities between cluster solutions
# sol_aris <- calc_aris(sol_df)
#
# # Extract hierarchical clustering order of the cluster solutions
# meta_cluster_order <- get_matrix_order(sol_aris)
#
# # Create a base heatmap for visual meta clustering
# ari_hm <- meta_cluster_heatmap(
# sol_aris,
# order = meta_cluster_order
# )
#
# # Identify meta cluster boundaries
# # This can also be by trial & error if you do not wish to use the shiny app.
# shiny_annotator(ari_hm)
#
# # Result of meta cluster examination
# split_vec <- c(2, 5, 12, 16)
#
# # Create a base heatmap for visual meta clustering
# ari_hm <- meta_cluster_heatmap(
# sol_aris,
# order = meta_cluster_order,
# split_vector = split_vec
# )
#
# ari_hm
#
# # Label meta clusters based on the split vector
# mc_sol_df <- label_meta_clusters(
# sol_df = ext_sol_df,
# split_vector = split_vec,
# order = meta_cluster_order
# )
#
# # Extracting representative solutions from each defined meta cluster
# rep_solutions <- get_representative_solutions(sol_aris, mc_sol_df)
#
# mc_manhattan <- mc_manhattan_plot(
# rep_solutions,
# dl = dl,
# target_dl = target_dl,
# point_size = 3,
# text_size = 12,
# plot_title = "Feature-Meta Cluster Associations",
# threshold = 0.05,
# neg_log_pval_thresh = 5
# )
## ----eval = FALSE, echo = FALSE-----------------------------------------------
# ggplot2::ggsave(
# "vignettes/mc_manhattan_clean.png",
# mc_manhattan,
# height = 10,
# width = 10,
# dpi = 100
# )
## ----eval = FALSE-------------------------------------------------------------
# var_manhattan <- var_manhattan_plot(
# dl,
# key_var = "household_income",
# plot_title = "Correlation of Features with Household Income",
# text_size = 16,
# neg_log_pval_thresh = 3,
# threshold = 0.05
# )
## ----eval = FALSE, echo = FALSE-----------------------------------------------
# ggplot2::ggsave(
# "vignettes/var_manhattan.png",
# var_manhattan,
# height = 5,
# width = 9,
# dpi = 75
# )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.