Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----echo = FALSE-------------------------------------------------------------
options(crayon.enabled = FALSE, cli.num_colors = 0)
## ----eval = FALSE-------------------------------------------------------------
# library(metasnf)
#
# my_dl <- data_list(
# list(cort_t, "cortical_thickness", "neuroimaging", "continuous"),
# list(cort_sa, "cortical_area", "neuroimaging", "continuous"),
# list(subc_v, "subcortical_volume", "neuroimaging", "continuous"),
# list(income, "household_income", "demographics", "continuous"),
# list(pubertal, "pubertal_status", "demographics", "continuous"),
# uid = "unique_id"
# )
#
# set.seed(42)
# sc <- snf_config(
# my_dl,
# n_solutions = 4,
# max_k = 40
# )
#
# sol_df <- batch_snf(my_dl, sc)
## ----eval = FALSE-------------------------------------------------------------
# my_dl_subsamples <- subsample_dl(
# my_dl,
# n_subsamples = 50,
# subsample_fraction = 0.85
# )
## ----eval = FALSE-------------------------------------------------------------
# batch_subsample_results <- batch_snf_subsamples(
# my_dl_subsamples,
# sc,
# verbose = TRUE
# )
## ----eval = FALSE-------------------------------------------------------------
# pairwise_aris <- subsample_pairwise_aris(
# batch_subsample_results,
# verbose = TRUE
# )
## ----eval = FALSE-------------------------------------------------------------
# inter_ss_ari_hm <- ComplexHeatmap::Heatmap(
# pairwise_aris$"raw_aris"$"s1",
# heatmap_legend_param = list(
# color_bar = "continuous",
# title = "Inter-Subsample\nARI",
# at = c(0, 0.5, 1)
# ),
# show_column_names = FALSE,
# show_row_names = FALSE
# )
## ----eval = FALSE, echo = FALSE-----------------------------------------------
# save_heatmap(
# inter_ss_ari_hm,
# "vignettes/inter_ss_ari_hm.png",
# width = 400,
# height = 300,
# res = 70
# )
## ----eval = FALSE-------------------------------------------------------------
# coclustering_results <- calculate_coclustering(
# batch_subsample_results,
# sol_df,
# verbose = TRUE
# )
#
# coclustering_results$"cocluster_summary"
## ----eval = FALSE-------------------------------------------------------------
# cocluster_dfs <- coclustering_results$"cocluster_dfs"
#
# cocluster_density(cocluster_dfs[[1]])
## ----eval = FALSE-------------------------------------------------------------
# # Fraction of co-clustering between observations, grouped by original
# # cluster membership
# cocluster_heatmap(
# cocluster_dfs[[1]],
# dl = my_dl,
# top_hm = list(
# "Income" = "household_income",
# "Pubertal Status" = "pubertal_status"
# ),
# annotation_colours = list(
# "Pubertal Status" = colour_scale(
# c(1, 4),
# min_colour = "black",
# max_colour = "purple"
# ),
# "Income" = colour_scale(
# c(0, 4),
# min_colour = "black",
# max_colour = "red"
# )
# )
# )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.