Nothing
#' Meta-analyses exploring the efficacy of surgical and pharmacological interventions.
#'
#' Fictitious dataset of two meta-analyses of RCTs assessing the efficacy of surgical
#' and pharmacological interventions on a numeric outcome.
#'
#' @format The dataset contains the following variables: \tabular{ll}{
#' \strong{meta_review} \tab name of the first author of the meta-analysis.\cr
#' \tab \cr
#' \strong{factor} \tab name of the intervention studied.\cr
#' \tab \cr
#' \strong{author} \tab first study author of the individual studies.\cr
#' \tab \cr
#' \strong{year} \tab year of publication of the individual studies.\cr
#' \tab \cr
#' \strong{measure} \tab type of effect size (SMD).\cr
#' \tab \cr
#' \strong{value} \tab SMD value.\cr
#' \tab \cr
#' \strong{se} \tab standard error of the SMD.\cr
#' \tab \cr
#' \strong{ci_lo} \tab lower bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{ci_up} \tab upper bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{mean_cases} \tab means of patients in the experimental arm.\cr
#' \tab \cr
#' \strong{mean_controls} \tab means of patients in the control arm.\cr
#' \tab \cr
#' \strong{sd_cases} \tab standard deviations of patients in the experimental arm.\cr
#' \tab \cr
#' \strong{sd_controls} \tab standard deviations of patients in the control arm.\cr
#' \tab \cr
#' \strong{n_cases} \tab number of patients in the experimental arm.\cr
#' \tab \cr
#' \strong{n_controls} \tab number of patients in the control arm.\cr
#' \tab \cr
#' \strong{rob} \tab risk of bias of the individual studies.\cr
#' \tab \cr
#' \strong{amstar} \tab AMSTAR score of the meta-analysis.\cr
#' }
#' @source No source, the data are entirely fictitious
"df.SMD"
#' Meta-analyses exploring the efficacy of surgical and pharmacological interventions.
#'
#' Fictitious dataset of two meta-analyses of RCTs assessing the efficacy of surgical
#' and pharmacological interventions on a numeric outcome.
#'
#' @format The dataset contains the following variables: \tabular{ll}{
#' \strong{meta_review} \tab name of the first author of the meta-analysis.\cr
#' \tab \cr
#' \strong{factor} \tab name of the intervention studied.\cr
#' \tab \cr
#' \strong{author} \tab first study author of the individual studies.\cr
#' \tab \cr
#' \strong{year} \tab year of publication of the individual studies.\cr
#' \tab \cr
#' \strong{measure} \tab type of effect size (MD).\cr
#' \tab \cr
#' \strong{value} \tab MD value.\cr
#' \tab \cr
#' \strong{ci_lo} \tab lower bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{ci_up} \tab upper bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{mean_cases} \tab means of patients in the experimental arm.\cr
#' \tab \cr
#' \strong{mean_controls} \tab means of patients in the control arm.\cr
#' \tab \cr
#' \strong{sd_cases} \tab standard deviations of patients in the experimental arm.\cr
#' \tab \cr
#' \strong{sd_controls} \tab standard deviations of patients in the control arm.\cr
#' \tab \cr
#' \strong{n_cases} \tab number of patients in the experimental arm.\cr
#' \tab \cr
#' \strong{n_controls} \tab number of patients in the control arm.\cr
#' \tab \cr
#' \strong{rob} \tab risk of bias of the individual studies.\cr
#' \tab \cr
#' \strong{amstar} \tab AMSTAR score of the meta-analysis.\cr
#' }
#' @source No source, the data are entirely fictitious
"df.MD"
#' Meta-analyses exploring a risk factor for neurodevelopmental disorders.
#'
#' Fictitious dataset of four meta-analyses of cross-sectional studies assessing a risk factor for neurodevelopmental disorders.
#'
#' @format The dataset contains the following variables: \tabular{ll}{
#' \strong{meta_review} \tab name of the first author of the meta-analysis.\cr
#' \tab \cr
#' \strong{factor} \tab name of the neurodevelopmental disorders on which the effect of the risk factor\cr
#' \tab is studied\cr
#' \tab \cr
#' \strong{author} \tab first study author of the individual studies.\cr
#' \tab \cr
#' \strong{year} \tab year of publication of the individual studies.\cr
#' \tab \cr
#' \strong{measure} \tab type of effect size (OR).\cr
#' \tab \cr
#' \strong{value} \tab OR value.\cr
#' \tab \cr
#' \strong{ci_lo} \tab lower bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{ci_up} \tab upper bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{n_cases} \tab number of cases (sum of the number of cases in the exposed\cr
#' \tab and non-exposed groups).\cr
#' \tab \cr
#' \strong{n_controls} \tab number of controls (sum of the number of controls in the exposed\cr
#' \tab and non-exposed groups).\cr
#' \tab \cr
#' \strong{n_exp} \tab number of participants in the exposed group (sum of the number of cases and\cr
#' \tab controls in the exposed group).\cr
#' \tab \cr
#' \strong{n_nexp} \tab number of participants in the non-exposed group (sum of the number of cases\cr
#' \tab and controls in the non-exposed group).\cr
#' \tab \cr
#' \strong{n_cases_exp} \tab number of cases in the exposed group.\cr
#' \tab \cr
#' \strong{n_controls_exp} \tab number of controls in the exposed group.\cr
#' \tab \cr
#' \strong{n_cases_nexp} \tab number of cases in the non-exposed group.\cr
#' \tab \cr
#' \strong{n_controls_nexp} \tab number of controls in the non-exposed group.\cr
#' }
#' @source No source, the data are entirely fictitious
"df.OR"
#' Meta-analysis of RCTs assessing different dietary interventions on a binary outcome.
#'
#' Fictitious dataset including meta-analyses with dependent effect sizes.
#'
#' @format The dataset contains the following variables: \tabular{ll}{
#' \strong{meta_review} \tab name of the first author of the meta-analysis.\cr
#' \tab \cr
#' \strong{factor} \tab name of the intervention studied.\cr
#' \tab \cr
#' \strong{author} \tab first study author of the individual studies\cr
#' \tab \cr
#' \strong{year} \tab year of publication of the individual studies.\cr
#' \tab \cr
#' \strong{measure} \tab type of effect size (OR).\cr
#' \tab \cr
#' \strong{value} \tab OR value.\cr
#' \tab \cr
#' \strong{ci_lo} \tab lower bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{ci_up} \tab upper bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{n_cases} \tab number of cases (sum of the number of cases in the exposed and\cr
#' \tab non-exposed groups).\cr
#' \tab \cr
#' \strong{n_controls} \tab number of controls (sum of the number of controls in the exposed\cr
#' \tab and non-exposed groups).\cr
#' \tab \cr
#' \strong{n_cases_exp} \tab number of cases in the exposed group.\cr
#' \tab \cr
#' \strong{n_controls_exp} \tab number of controls in the exposed group.\cr
#' \tab \cr
#' \strong{n_cases_nexp} \tab number of cases in the non-exposed group.\cr
#' \tab \cr
#' \strong{n_controls_nexp} \tab number of controls in the non-exposed group.\cr
#' \tab \cr
#' \strong{multiple_es} \tab indicates the reason of the presence for multiple effect sizes\cr
#' \tab (due to multiple groups or outcomes) per study.\cr
#' }
#' @source No source, the data are entirely fictitious
"df.OR.multi"
#' Meta-analysis of the adverse events of antidepressants.
#'
#' Fictitious dataset of a meta-analysis of cohort studies assessing the risks of adverse outcomes when taking selective serotonin reuptake inhibitors (SSRIs) therapy.
#'
#' @format The dataset contains the following variables: \tabular{ll}{
#' \strong{meta_review} \tab name of the first author of the meta-analysis.\cr
#' \tab \cr
#' \strong{factor} \tab name of the type of antidepressant studied.\cr
#' \tab \cr
#' \strong{author} \tab first study author of the individual studies.\cr
#' \tab \cr
#' \strong{year} \tab year of publication of the individual studies.\cr
#' \tab \cr
#' \strong{measure} \tab type of effect size (RR).\cr
#' \tab \cr
#' \strong{value} \tab RR value.\cr
#' \tab \cr
#' \strong{ci_lo} \tab lower bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{ci_up} \tab upper bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{n_cases_exp} \tab number of cases in the exposed group.\cr
#' \tab \cr
#' \strong{n_exp} \tab number of participants in the exposed group (sum of the number of cases and\cr
#' \tab controls in the exposed group).\cr
#' \tab \cr
#' \strong{n_cases_nexp} \tab number of cases in the non-exposed group.\cr
#' \tab \cr
#' \strong{n_nexp} \tab number of participants in the non-exposed group (sum of the number of cases\cr
#' \tab and controls in the non-exposed group).\cr
#' }
#' @source No source, the data are entirely fictitious
"df.RR"
#' Meta-analysis exploring adverse events of smoking.
#'
#' Fictitious dataset of a meta-analysis of prospective cohorts assessing adverse effects of smoking on one binary outcome.
#'
#' @format The dataset contains the following variables:\tabular{ll}{
#' \strong{meta_review} \tab name of the first author of the meta-analysis.\cr
#' \tab \cr
#' \strong{factor} \tab name of the factor (only one factor is included).\cr
#' \tab \cr
#' \strong{author} \tab first study author of the individual studies\cr
#' \tab \cr
#' \strong{year} \tab year of publication of the individual studies.\cr
#' \tab \cr
#' \strong{measure} \tab type of effect size (IRR).\cr
#' \tab \cr
#' \strong{value} \tab IRR value.\cr
#' \tab \cr
#' \strong{ci_lo} \tab lower bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{ci_up} \tab upper bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{n_cases} \tab number of cases (sum of the number of cases in the exposed and non-exposed\cr
#' \tab groups).\cr
#' \tab \cr
#' \strong{n_cases_exp} \tab number of cases in the exposed group.\cr
#' \tab \cr
#' \strong{n_cases_nexp} \tab number of cases in the non-exposed group.\cr
#' \tab \cr
#' \strong{time} \tab total person-time at risk (sum of the person-time at risk in the exposed and\cr
#' \tab non-exposed groups).\cr
#' \tab \cr
#' \strong{time_exp} \tab person-time at risk in the exposed group.\cr
#' \tab \cr
#' \strong{time_nexp} \tab person-time at risk in the non-exposed group.\cr
#'}
#' @source No source, the data are entirely fictitious
"df.IRR"
#' Meta-analyses exploring the efficacy of several interventions on a binary outcome.
#'
#' Fictitious dataset of four meta-analyses of RCTs assessing the efficacy of yoga, aerobic training,
#' resistance training and mindfulness on a binary outcome
#'
#' @format The dataset contains the following variables: \tabular{ll}{
#' \strong{meta_review} \tab name of the first author of the meta-analysis.\cr
#' \tab \cr
#' \strong{factor} \tab name of the intervention studied.\cr
#' \tab \cr
#' \strong{author} \tab first study author of the individual studies.\cr
#' \tab \cr
#' \strong{year} \tab year of publication of the individual studies.\cr
#' \tab \cr
#' \strong{measure} \tab type of effect size (HR).\cr
#' \tab \cr
#' \strong{value} \tab HR value.\cr
#' \tab \cr
#' \strong{ci_lo} \tab lower bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{ci_up} \tab upper bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{n_cases} \tab number of cases.\cr
#' \tab \cr
#' \strong{n_controls} \tab number of controls.\cr
#'}
#' @source No source, the data are entirely fictitious
"df.HR"
#' Training dataset
#'
#' This is a non-formatted dataset that is used in a vignette to illustrate how obtaining a well-formatted dataset
#' with the help of the \code{view.errors.umbrella()} function.
#'
#' @format The dataset contains the following variables: \tabular{ll}{
#' \strong{comment} \tab comments on studies.\cr
#' \tab \cr
#' \strong{risk_factor} \tab name of the intervention studied.\cr
#' \tab \cr
#' \strong{author_study} \tab first study author of the individual studies.\cr
#' \tab \cr
#' \strong{year_publication_study} \tab year of publication of the individual studies.\cr
#' \tab \cr
#' \strong{type_of_effect_size} \tab type of effect size.\cr
#' \tab \cr
#' \strong{number_of_cases_exposed} \tab number of cases in the exposed group.\cr
#' \tab \cr
#' \strong{number_of_cases_non_exposed} \tab number of cases in the non-exposed group.\cr
#' \tab \cr
#' \strong{number_of_controls_exposed} \tab number of controls in the exposed group.\cr
#' \tab \cr
#' \strong{number_of_controls_non_exposed} \tab number of controls in the non-exposed group.\cr
#' \tab \cr
#' \strong{number_of_participants_exposed} \tab total number of participants in the exposed group.\cr
#' \tab \cr
#' \strong{number_of_participants_non_exposed} \tab total number of participants in the non-exposed group.\cr
#' \tab \cr
#' \strong{number_of_cases} \tab number of cases.\cr
#' \tab \cr
#' \strong{number_of_controls} \tab number of controls.\cr
#' \tab \cr
#' \strong{effect_size_value} \tab value of the effect size\cr
#' \tab \cr
#' \strong{low_bound_ci} \tab lower bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{up_bound_ci} \tab upper bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{time_disease_free} \tab total person-time at risk (sum of the person-time at risk in \cr
#' \tab the exposed and non-exposed groups). \cr
#' \tab \cr
#' \strong{mean_of_intervention_group} \tab mean of the intervention group\cr
#' \tab \cr
#' \strong{mean_of_control_group} \tab mean of the control group\cr
#' \tab \cr
#' \strong{sd_of_intervention_group} \tab sd of the intervention group\cr
#' \tab \cr
#' \strong{sd_of_control_group} \tab sd of the control group\cr
#'}
#' @source No source, the data are entirely fictitious
"df.train"
#' Meta-analyses exploring the risk factors for posttraumatic stress disorder.
#'
#' Real dataset taken from Tortella-Feliu et al. (2019).
#'
#' @format The dataset contains the following variables: \tabular{ll}{
#' \strong{meta_review} \tab name of the first author of the meta-analysis.\cr
#' \tab \cr
#' \strong{factor} \tab name of the risk factor.\cr
#' \tab \cr
#' \strong{author} \tab first study author of the individual studies.\cr
#' \tab \cr
#' \strong{year} \tab year of publication of the individual studies.\cr
#' \tab \cr
#' \strong{multiple_es} \tab indicates the reason of the presence of multiple effect sizes \cr
#' \tab (due to multiple groups or outcomes) per study.\cr
#' \tab \cr
#' \strong{measure} \tab type of effect size.\cr
#' \tab \cr
#' \strong{value} \tab value of the effect size.\cr
#' \tab \cr
#' \strong{ci_lo} \tab lower bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{ci_up} \tab upper bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{n_cases} \tab number of cases.\cr
#' \tab \cr
#' \strong{n_controls} \tab number of controls.\cr
#' \tab \cr
#' \strong{n_exp} \tab number of participants in the exposed group (sum of the number of cases\cr
#' \tab and controls in the exposed group).\cr
#' \tab \cr
#' \strong{n_nexp} \tab number of participants in the non-exposed group (sum of the number of cases\cr
#' \tab and controls in the non-exposed group).\cr
#' \tab \cr
#' \strong{n_cases_exp} \tab number of cases in the exposed group.\cr
#' \tab \cr
#' \strong{n_controls_exp} \tab number of controls in the exposed group.\cr
#' \tab \cr
#' \strong{n_cases_nexp} \tab number of cases in the non-exposed group.\cr
#' \tab \cr
#' \strong{n_controls_nexp} \tab number of controls in the non-exposed group.\cr
#' \tab \cr
#' \strong{mean_cases} \tab means of participants in the experimental arm.\cr
#' \tab \cr
#' \strong{sd_cases} \tab standard deviation of participants in the experimental arm.\cr
#' \tab \cr
#' \strong{mean_controls} \tab means of participants in the control arm.\cr
#' \tab \cr
#' \strong{sd_controls} \tab standard deviation of participants in the control arm.\cr
#' \tab \cr
#' \strong{amstar} \tab AMSTAR score of the meta-analysis\cr
#' }
#' @source Tortella-Feliu, M. and Fullana, M.A., Perez-Vigil, A., Torres, X., Chamorro, J., and Littarelli, S.A., ..., & Radua, J. (2019). Risk Factors for Posttraumatic Stress Disorder: An Umbrella Review of Systematic Reviews and Meta-Analyses.
#' \emph{Neuroscience & Biobehavioral Reviews}, \bold{107}, 154--165.
"df.radua2019"
#' Meta-analyses exploring the efficacy of an intervention on a continuous outcome measured before and after the intervention.
#'
#' Fictitious dataset of three meta-analyses of RCTs assessing the efficacy of an intervention on a continuous outcome in 3 populations.
#'
#' @format The dataset contains the following variables: \tabular{ll}{
#' \strong{meta_review} \tab name of the first author of the meta-analysis.\cr
#' \tab \cr
#' \strong{factor} \tab name of the population studied.\cr
#' \tab \cr
#' \strong{author} \tab first study author of the individual studies.\cr
#' \tab \cr
#' \strong{year} \tab year of publication of the individual studies.\cr
#' \tab \cr
#' \strong{measure} \tab type of effect size (SMC).\cr
#' \tab \cr
#' \strong{value} \tab SMC value.\cr
#' \tab \cr
#' \strong{se} \tab standard error of the SMC.\cr
#' \tab \cr
#' \strong{ci_lo} \tab lower bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{ci_up} \tab upper bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{n_cases} \tab number of cases.\cr
#' \tab \cr
#' \strong{n_controls} \tab number of controls.\cr
#' \tab \cr
#' \strong{mean_cases} \tab means at post-test of patients in the experimental arm.\cr
#' \tab \cr
#' \strong{mean_controls} \tab means at post-test of patients in the control arm.\cr
#' \tab \cr
#' \strong{sd_cases} \tab standard deviations at post-test of patients in the experimental arm.\cr
#' \tab \cr
#' \strong{sd_controls} \tab standard deviations at post-test of patients in the control arm.\cr
#' \tab \cr
#' \strong{mean_pre_cases} \tab means at baseline of patients in the experimental arm.\cr
#' \tab \cr
#' \strong{mean_pre_controls} \tab means at baseline of patients in the control arm.\cr
#' \tab \cr
#' \strong{sd_pre_cases} \tab standard deviations at baseline of patients in the experimental arm.\cr
#' \tab \cr
#' \strong{sd_pre_controls} \tab standard deviations at baseline of patients in the control arm.\cr
#'}
#' @source No source, the data are entirely fictitious
"df.SMC"
#' Meta-analyses exploring the efficacy of an intervention on a continuous outcome measured before and after the intervention.
#'
#' Fictitious dataset of three meta-analyses of RCTs assessing the efficacy of an intervention on a continuous outcome in 3 populations.
#'
#' @format The dataset contains the following variables: \tabular{ll}{
#' \strong{meta_review} \tab name of the first author of the meta-analysis.\cr
#' \tab \cr
#' \strong{factor} \tab name of the population studied.\cr
#' \tab \cr
#' \strong{author} \tab first study author of the individual studies.\cr
#' \tab \cr
#' \strong{year} \tab year of publication of the individual studies.\cr
#' \tab \cr
#' \strong{measure} \tab type of effect size (MC).\cr
#' \tab \cr
#' \strong{value} \tab MC value.\cr
#' \tab \cr
#' \strong{ci_lo} \tab lower bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{ci_up} \tab upper bound of the 95\% confidence interval.\cr
#' \tab \cr
#' \strong{n_cases} \tab number of cases.\cr
#' \tab \cr
#' \strong{n_controls} \tab number of controls.\cr
#' \tab \cr
#' \strong{mean_change_cases} \tab mean change score of patients in the experimental arm.\cr
#' \tab \cr
#' \strong{mean_change_controls} \tab mean change score of patients in the control arm.\cr
#' \tab \cr
#' \strong{sd_change_cases} \tab standard deviations of the change score of patients in the experimental arm.\cr
#' \tab \cr
#' \strong{sd_change_controls} \tab standard deviations of the change score of patients in the control arm.\cr
#'}
#' @source No source, the data are entirely fictitious
"df.MC"
#' Meta-analyses of correlational data
#'
#' Fictitious dataset of four meta-analyses of cross-sectional studies exploring the association between
#' pre- or peri-pregnancy indicators and a numeric variable.
#'
#' @format The dataset contains the following variables: \tabular{ll}{
#' \strong{meta_review} \tab name of the first author of the meta-analysis.\cr
#' \tab \cr
#' \strong{factor} \tab name of the factors.\cr
#' \tab \cr
#' \strong{author} \tab first study author of the individual studies.\cr
#' \tab \cr
#' \strong{year} \tab year of publication of the individual studies.\cr
#' \tab \cr
#' \strong{measure} \tab type of effect size (R).\cr
#' \tab \cr
#' \strong{value} \tab R value.\cr
#' \tab \cr
#' \strong{n_sample} \tab total number of individuals in the sample.\cr
#'}
#' @source No source, the data are entirely fictitious
"df.R"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.