```{css, echo=FALSE} p { font-size: 12px; }
```r knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
In this package, we provide e-value for four DMR (differentially methylated region) detection tools (MethylKit, Metilene, BiSeq and DMRfinder) and general purpose.
For DMR
(methylKit
, biseq
, DMRfinder
or metilene
), the met-evalue calculation is conducted by the metevalue.[DMR]
function.
| DMR | Method | Input.1 Example | Input.2 Example |
|:-----|:-----|:-----|:-----|
| MethylKit | metevalue.methylKit
| data(demo_methylkit_methyrate)
| data(demo_methylkit_met_all)
|
| BiSeq | metevalue.biseq
| data(demo_biseq_methyrate)
| data(demo_biseq_DMR)
|
| DMRfinder | metevalue.DMRfinder
| data(demo_DMRfinder_rate_combine)
| data(demo_DMRfinder_DMRs)
|
| Metilene | metevalue.metilene
| data(demo_metilene_input)
| data(demo_metilene_out)
|
| Other DNA methylation tools | varevalue.single_general
| data(demo_metilene_input)
or any data above| |
| RNA-seq data | metevalue.RNA_general
| data(demo_desq_out)
| |
Two routines are supported to calculate the combined e-value:
files
include the outputs of given DMR
packages and its corresponding e-value of each region;R data frames
are corresponding data.frame
objects.Please vist the metevalue-emo project for more demos.
We design the metevalue.[DMR]
function to accept similar parameter patterns:
metevalue.[DMR]( methyrate, # methylation rates of each CpG site [DMR].output, # Output file name of [DMR] with e-value of each region adjust.methods = "BH", # Adjust methods of e-value sep = "\t", # seperator, default is the TAB key bheader = FALSE # A logical value indicating whether the [DMR].output file # contains the names of the variables as its first line )
Here [DMR]
could be one of methylKit
, biseq
, DMRfinder
or metilene
.
We provide the evalue_buildin_var_fmt_nm
and varevalue.metilene
function to handle the general DMR e-value calculation in DNA methylation studies:
# Here `[DMR]` coudle be one of `methylKit`, `biseq`, `DMRfinder` or `metilene`. method_in_use = "[DMR]" result = evalue_buildin_var_fmt_nm( methyrate, # Data frame of the methylation rate DMR_evalue_output, # Data frame of output data corresponding to the # "method" option method = method_in_use) # DMR: "metilene", "biseq", "DMRfinder" or "methylKit" result = list(a = result$a, b = result$b, a_b = evalue_buildin_sql(result$a, result$b, method = method_in_use)) result = varevalue.metilene(result$a, result$b, result$a_b)
Replace [DMR]
to one of methylKit
, biseq
, DMRfinder
or metilene
accordingly.
For RNAseq
user, metevalue.RNA_general
could be called directly. Example is:
data("demo_desq_out") evalue = metevalue.RNA_general(demo_desq_out, 'treated','untreated')
Notice: for different
[DMR]
, thedata.frame
schemas are different!!! Check the R help document for details. Check the Demo data section for details.
methylKit is an R package for DNA methylation analysis and annotation from high-throughput bisulfite sequencing. The package is designed to deal with sequencing data from RRBS and its variants, but also target-capture methods and whole genome bisulfite sequencing.
Currently, metevalue
package supports the e-value calculation using the
methylKit
output file.
library(metevalue) ####Simulation Data #### set.seed(1234) simu_g_value <- function(n, r = 0.1){ x = runif(n) x[runif(n) <= r] = 0 return(x); } library(methylKit) file.list=list( system.file("extdata", "test1.myCpG.txt", package = "methylKit"), system.file("extdata", "test2.myCpG.txt", package = "methylKit"), system.file("extdata", "control1.myCpG.txt", package = "methylKit"), system.file("extdata", "control2.myCpG.txt", package = "methylKit") ) # read the files to a methylRawList object: myobj myobj=methRead(file.list, sample.id=list("test1","test2","ctrl1","ctrl2"), assembly="hg18", treatment=c(1,1,0,0), context="CpG" ) meth=unite(myobj, destrand=FALSE) meth.C <- getData(meth)[,seq(6,ncol(meth),3)] meth.T <- getData(meth)[,seq(7,ncol(meth),3)] mr <- meth.C/(meth.C + meth.T) chr_pos = getData(meth)[,1:2] methyrate = data.frame(chr_pos,mr) names(methyrate) = c('chr', 'pos', rep('g1',2), rep('g2',2)) region<-tileMethylCounts(myobj) meth<-unite(region,destrand=F) myDiff<-calculateDiffMeth(meth) #> two groups detected: #> will calculate methylation difference as the difference of #> treatment (group: 1) - control (group: 0) met_all<-getMethylDiff(myDiff,type="all") example_tempfiles = tempfile(c("rate_combine", "methylKit_DMR_raw")) tempdir() write.table(methyrate, file=example_tempfiles[1], row.names=F, col.names=T, quote=F, sep='\t') write.table (met_all, file=example_tempfiles[2], sep ="\t", row.names =F, col.names =T, quote =F)
evalue.methylKit
function could be used to tackle the problem.
result = metevalue.methylKit(example_tempfiles[1], example_tempfiles[2], bheader = T) #> Joining, by = c("start", "end") str(result) #> 'data.frame': 24 obs. of 9 variables: #> $ chr : chr "chr21" "chr21" "chr21" "chr21" ... #> $ start : int 9927001 9944001 9959001 9967001 10011001 10077001 10087001 10186001 13664001 13991001 ... #> $ end : int 9928000 9945000 9960000 9968000 10012000 10078000 10088000 10187000 13665000 13992000 ... #> $ strand : chr "*" "*" "*" "*" ... #> $ p : num 2.47e-10 2.57e-21 4.39e-23 3.08e-04 2.02e-65 ... #> $ qvalue : num 3.24e-10 9.58e-21 2.36e-22 2.37e-04 3.27e-64 ... #> $ meth.diff: num -34.1 -40.2 -25.4 -25.9 25.8 ... #> $ e_value : num 1.65 1.65 1.65 1.65 1.65 ... #> $ e_adjust : num 1.65 1.65 1.65 1.65 1.65 ...
Alternatively, one could use the build-in functions to derive functions which avoid the file operation:
result = evalue_buildin_var_fmt_nm(methyrate, met_all, method="methylKit") result = list(a = result$a, b = result$b, a_b = evalue_buildin_sql(result$a, result$b, method="methylKit")) result = varevalue.metilene(result$a, result$b, result$a_b) #> Joining, by = c("start", "end") str(result) #> 'data.frame': 24 obs. of 9 variables: #> $ chr : Factor w/ 1 level "chr21": 1 1 1 1 1 1 1 1 1 1 ... #> $ start : int 9927001 9944001 9959001 9967001 10011001 10077001 10087001 10186001 13664001 13991001 ... #> $ end : int 9928000 9945000 9960000 9968000 10012000 10078000 10088000 10187000 13665000 13992000 ... #> $ strand : Factor w/ 3 levels "+","-","*": 3 3 3 3 3 3 3 3 3 3 ... #> $ p : num 2.47e-10 2.57e-21 4.39e-23 3.08e-04 2.02e-65 ... #> $ qvalue : num 3.24e-10 9.58e-21 2.36e-22 2.37e-04 3.27e-64 ... #> $ meth.diff: num -34.1 -40.2 -25.4 -25.9 25.8 ... #> $ e_value : num 1.65 1.65 1.65 1.65 1.65 ... #> $ e_adjust : num 1.65 1.65 1.65 1.65 1.65 ...
First, we load the methylation data at CpG site levels from ‘BiSeq’ package. Then we cluster CpG sites into DMRs using ‘BiSeq’.
library(BiSeq) library(dplyr) data(rrbs) rrbs.rel <- rawToRel(rrbs) methyrate <- methLevel(rrbs.rel) methyrate <- data.frame(methyrate) methyrateq = cbind(rows = as.numeric(row.names(methyrate)), methyrate) methypos = data.frame(rows = as.numeric(row.names(methyrate)), rowRanges(rrbs)) methyrate = left_join(methypos, methyrateq) methyrate = methyrate[,c(2,3,7:16)] names(methyrate) <- c('chr','pos',rep('g1',5),rep('g2',5)) rrbs.clust.unlim <- clusterSites(object = rrbs,perc.samples = 3/4,min.sites = 20,max.dist = 100) clusterSitesToGR(rrbs.clust.unlim) ind.cov <- totalReads(rrbs.clust.unlim) > 0 quant <- quantile(totalReads(rrbs.clust.unlim)[ind.cov]) rrbs.clust.lim <- limitCov(rrbs.clust.unlim, maxCov = quant) predictedMeth <- predictMeth(object = rrbs.clust.lim) test<- predictedMeth[, colData(predictedMeth)$group == "test"] control <- predictedMeth[, colData(predictedMeth)$group == "control"] mean.test <- rowMeans(methLevel(test)) mean.control <- rowMeans(methLevel(control)) betaResults <- betaRegression(formula = ~group,link = "probit",object = predictedMeth,type = "BR") vario <- makeVariogram(betaResults) vario.sm <- smoothVariogram(vario, sill = 0.9) locCor <- estLocCor(vario.sm) clusters.rej <- testClusters(locCor) clusters.trimmed <- trimClusters(clusters.rej) DMRs <- findDMRs(clusters.trimmed,max.dist = 100,diff.dir = TRUE) example_tempfiles = tempfile(c('rate_combine', 'BiSeq_DMR')) write.table(methyrate, example_tempfiles[1], row.names=F, col.names=T, quote=F, sep='\t') write.table(DMRs, example_tempfiles[2], quote=F, row.names = F,col.names = F, sep = '\t')
Finally, we add E-values and adjusted E-values as additional columns
to the output file of ‘BiSeq’.metevalue.biseq
function could be used to
tackle the problem.
result = metevalue.biseq(example_tempfiles[1],example_tempfiles[2]) str(result)
Given the input file
rate_combine_DMRfinder
: a file containing methylation rates at each CpG site
DMRfinder_DMR
: the output file from ‘DMRfinder’
rate_combine <- read.table("rate_combine_DMRfinder", header = T) head(rate_combine) DMRs <- read.table("DMRfinder_DMR", header = T) head(DMRs)
Adding E-values and adjusted E-values as additional columns to file ‘DMRfinder_DMR’
result <- metevalue.DMRfinder('rate_combine_DMRfinder', 'DMRfinder_DMR', bheader=T) head(result)
Alternatively, function varevalue.metilene
can also provide e-value
and adjusted e-value.
result = evalue_buildin_var_fmt_nm(rate_combine, DMRs, method="DMRfinder") result = list(a = result$a, b = result$b, a_b = evalue_buildin_sql(result$a, result$b, method="DMRfinder")) result = varevalue.metilene(result$a, result$b, result$a_b) head(result)
Given
metilene.input
: the input file of Metilene
containing methylation rates at each CpG sitemetilene.out
: the output file of Metilene
input <- read.table("metilene.input", header = T) head(input) out <- read.table("metilene.out", header = F) head(out)
Adding E-values and adjusted E-values as additional columns to
metilene.out
result <- metevalue.metilene('metilene.input', 'metilene.out') head(result)
Alternatively, function varevalue.metilene
can also provide e-value
and adjusted e-value.
result = evalue_buildin_var_fmt_nm(input, out, method="metilene") result = list(a = result$a, b = result$b, a_b = evalue_buildin_sql(result$a, result$b, method="metilene")) result = varevalue.metilene(result$a, result$b, result$a_b) head(result)
In above examples, we have already provided examples to calculate E-values directly from DMR detection tools including BiSeq, DMRfinder, MethylKit and Metilene. All of these require users to prepare an output file of different tools. However, users may wonder how to calculate the E-values directly from CpG sites or other DNA methylation tools not presented above. We then facilitate the purpose in the following example.
methyrate
: a file containing methylation rates at each CpG site of 2 different groupsBy changing the group name, start site and end site, function varevalue.single_general
can calculate e-value of any site or region using a general methylation rates data without using an output file of a specific tool.
input <- read.table("methyrate", header = T) e_value <- varevalue.single_general(methyrate=input, group1_name='g1', group2_name='g2', chr='chr21', start=9439679, end=9439679) head(e_value)
The framework of E-value calculation presented in this project is also able to be extended to other genomic data including RNA-seq. Here is an example to introduce the E-value calculation in RNA-seq.
desq_out
: the RNA datafunction metevalue.RNA_general
can provide e-values for each row of the normalized expression level of RNA-seq data.
input <- read.table("desq_out", header = T) data_e <- metevalue.RNA_general(input, group1_name='treated', group2_name='untreated') head(data_e)
Demo data for different metevalue.[DMR]
functions are listed in the section.
methyrate Example
|chr | pos| g1| g1| g2| g2| |:-----|-------:|---------:|---------:|---------:|---------:| |chr21 | 9853296| 0.5882353| 0.8048048| 0.8888889| 0.8632911| |chr21 | 9853326| 0.7058824| 0.7591463| 0.8750000| 0.7493404|
methylKit.output Example
|chr| start| end| strand | pvalue| qvalue|meth.diff| |:-----|-------:|-------:|:------|------:|------:|---------:| |chr21 | 9927001| 9928000| | 0| 0| -34.07557| |chr21 | 9944001| 9945000| | 0| 0| -40.19089|
methyrate Example
|chr | pos| g1| g1| g1| g1| g1| g2| g2| g2| g2| g2| |:----|------:|---------:|--:|---:|---:|---:|------:|---------:|---------:|---------:|---------:| |chr1 | 870425| 0.8205128| 1| 0.7| NaN| NaN| 0.3125| 0.7419355| 0.2461538| 0.1794872| 0.2413793| |chr1 | 870443| 0.8461538| 1| 0.7| NaN| NaN| 0.3750| 0.3225806| 0.2923077| 0.0512821| 0.2413793|
biseq.output Example
|seqnames | start| end| width|strand | median.p| median.meth.group1| median.meth.group2| median.meth.diff| |:--------|------:|------:|-----:|:------|---------:|------------------:|------------------:|----------------:| |chr1 | 872369| 872616| 248| | 0.0753559| 0.9385462| 0.8666990| 0.0710524| |chr1 | 875227| 875470| 244| | 0.0000026| 0.5136315| 0.1991452| 0.2942668|
methyrate Example
|chr | pos| g1| g1.1| g2| g2.1| |:----|---------:|--:|---------:|--:|----:| |chr1 | 202833315| 0| 0.0000000| 0| 0| |chr1 | 202833323| 1| 0.8095238| 1| 1|
DMRfinder.output Example
|chr | start| end| CpG| Control.mu| Exptl.mu| Control..Exptl.diff| Control..Exptl.pval| |:-----|--------:|--------:|---:|----------:|---------:|-------------------:|-------------------:| |chr8 | 25164078| 25164102| 3| 0.9241646| 0.7803819| -0.1437827| 0.0333849| |chr21 | 9437432| 9437538| 14| 0.7216685| 0.1215506| -0.6001179| 0.0000000|
methyrate Example
|chr | pos| g1| g1.1| g1.2| g1.3| g1.4| g1.5| g1.6| g1.7| g2| g2.1| g2.2| g2.3| g2.4| g2.5| g2.6| g2.7| |:-----|-------:|---------:|----:|---------:|----:|----:|---------:|----:|---------:|---------:|----:|----:|----:|---------:|----:|----:|----:| |chr21 | 9437433| 0.9285714| NA| 0.7222222| 0.75| 1| 0.6666667| 1| 0.8695652| 0.0000000| 0| 0| 0| 0.0000000| 0.0| NA| 0.00| |chr21 | 9437445| 1.0000000| NA| 0.9444444| 0.75| 1| 0.6666667| 0| 0.8695652| 0.6111111| 0| 0| 0| 0.7333333| 0.6| NA| 0.75|
metilene.output Example
| chr | start | end | q-value | methyl.diff | CpGs | p | p2 | m1 | m2 | |:-----|-------:|-------:|--:|--------:|--:|--:|--:|-------:|-------:| |chr21 | 9437432| 9437540| 0| 0.610989| 26| 0| 0| 0.73705| 0.12606| |chr21 | 9708982| 9709189| 0| 0.475630| 28| 0| 0| 0.58862| 0.11299|
metilene.input Example
|chr | pos| g1| g1.1| g1.2| g1.3| g1.4| g1.5| g1.6| g1.7| g2| g2.1| g2.2| g2.3| g2.4| g2.5| g2.6| g2.7| |:-----|-------:|---------:|----:|---------:|----:|----:|---------:|----:|---------:|---------:|----:|----:|----:|---------:|----:|----:|----:| |chr21 | 9437433| 0.9285714| NA| 0.7222222| 0.75| 1| 0.6666667| 1| 0.8695652| 0.0000000| 0| 0| 0| 0.0000000| 0.0| NA| 0.00| |chr21 | 9437445| 1.0000000| NA| 0.9444444| 0.75| 1| 0.6666667| 0| 0.8695652| 0.6111111| 0| 0| 0| 0.7333333| 0.6| NA| 0.75|
metilene.output Example
| chr | start | end | q-value | methyl.diff | CpGs | p | p2 | m1 | m2 | |:-----|-------:|-------:|--:|--------:|--:|--:|--:|-------:|-------:| |chr21 | 9437432| 9437540| 0| 0.610989| 26| 0| 0| 0.73705| 0.12606| |chr21 | 9708982| 9709189| 0| 0.475630| 28| 0| 0| 0.58862| 0.11299|
methyrate Example
|chr | pos| g1| g1.1| g1.2| g1.3| g1.4| g1.5| g1.6| g1.7| g2| g2.1| g2.2| g2.3| g2.4| g2.5| g2.6| g2.7| |:-----|-------:|---------:|----:|---------:|----:|----:|---------:|----:|---------:|---------:|----:|----:|----:|---------:|----:|----:|----:| |chr21 | 9437433| 0.9285714| NA| 0.7222222| 0.75| 1| 0.6666667| 1| 0.8695652| 0.0000000| 0| 0| 0| 0.0000000| 0.0| NA| 0.00| |chr21 | 9437445| 1.0000000| NA| 0.9444444| 0.75| 1| 0.6666667| 0| 0.8695652| 0.6111111| 0| 0| 0| 0.7333333| 0.6| NA| 0.75|
desq_out Example
| treated1fb| treated2fb| treated3fb| untreated1fb| untreated2fb| untreated3fb| untreated4fb| |:----------|:----------|:----------|:------------|:------------|:------------|:------------| | 4.449648| 4.750104| 4.431634| 4.392285| 4.497514| 4.762213| 4.533928| | 6.090031| 5.973211| 5.913239| 6.238684| 6.050743| 5.932738| 6.022005|
Please vist the metevalue-emo project for more demos.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.