| dmggd | R Documentation | 
Density of the multivariate (p variables) generalized Gaussian distribution (MGGD)
with mean vector mu, dispersion matrix Sigma and shape parameter beta.
dmggd(x, mu, Sigma, beta, tol = 1e-6)
| x | length  | 
| mu | length  | 
| Sigma | symmetric, positive-definite square matrix of order  | 
| beta | positive real number. The shape of the distribution. | 
| tol | tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma. | 
The density function of a multivariate generalized Gaussian distribution is given by:
 \displaystyle{ f(\mathbf{x}|\boldsymbol{\mu}, \Sigma, \beta) = \frac{\Gamma\left(\frac{p}{2}\right)}{\pi^\frac{p}{2} \Gamma\left(\frac{p}{2 \beta}\right) 2^\frac{p}{2\beta}} \frac{\beta}{|\Sigma|^\frac{1}{2}} e^{-\frac{1}{2}\left((\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu})\right)^\beta} } 
When p=1 (univariate case) it becomes:
 \displaystyle{ f(x|\mu, \sigma, \beta) = \frac{\Gamma\left(\frac{1}{2}\right)}{\pi^\frac{1}{2} \Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2\beta}} \frac{\beta}{\sigma^\frac{1}{2}} \ e^{-\frac{1}{2} \left(\frac{(x - \mu)^2}{2 \sigma}\right)^\beta} = \frac{\beta}{\Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2 \beta} \sqrt{\sigma}} \ e^{-\frac{1}{2} \left(\frac{(x - \mu)^2}{\sigma}\right)^\beta} } 
The value of the density.
Pierre Santagostini, Nizar Bouhlel
E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/03610929808832115")}
rmggd: random generation from a MGGD.
estparmggd: estimation of the parameters of a MGGD.
plotmggd, contourmggd: plot of the probability density of a bivariate generalised Gaussian distribution.
mu <- c(0, 1, 4)
Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
beta <- 0.74
dmggd(c(0, 1, 4), mu, Sigma, beta)
dmggd(c(1, 2, 3), mu, Sigma, beta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.