View source: R/multiscale_gwr.R
multiscale_gwr | R Documentation |
multiscale_gwr This function adapts the multiscale Geographically Weighted Regression (GWR) methodology proposed by Fotheringam et al. in 2017, employing a backward fitting procedure within the MGWRSAR subroutines. The consecutive bandwidth optimizations are performed by minimizing the corrected Akaike criteria.
multiscale_gwr(formula,data,coords,kernels='bisq',init='GWR',
maxiter=20,nstable=6,tolerance=0.000001,doMC=FALSE,ncore=1,HF=NULL,
H0=NULL,H2=NULL,Model=NULL,model=NULL,get_AICg=FALSE,verbose=FALSE,
control=list(SE=FALSE,adaptive=TRUE,NN=800,isgcv=FALSE,family=gaussian()))
formula |
A formula. |
data |
A dataframe. |
coords |
default NULL, a dataframe or a matrix with coordinates. |
kernels |
A vector containing the kernel types. Possible types: rectangle ("rectangle"), bisquare ("bisq"), tricube ("tcub"), epanechnikov ("epane") |
init |
starting model (lm or GWR) |
maxiter |
maximum number of iterations in the back-fitting procedure. |
nstable |
required number of consecutive unchanged optimal bandwidth (by covariate) before leaving optimisation of bandwidth size, default 3. |
tolerance |
value to terminate the back-fitting iterations (ratio of change in RMSE) |
doMC |
A boolean for Parallel computation, default FALSE. |
ncore |
number of CPU cores for parallel computation, default 1. |
HF |
if available, a vector containing the optimal bandwidth parameters for each covariate, default NULL. |
H0 |
A bandwidth value for the starting GWR model, default NULL. |
H2 |
A bandwidth temporal value for the starting GWR model, default NULL. |
Model |
Type of Model. |
model |
A previous model estimated using multiscale_gwr function, default NULL |
get_AICg |
Boolean, should Global AICc be estimated. |
verbose |
Boolean, verbose mode. |
control |
a list of extra control arguments, see MGWRSAR help. |
Return an object of class mgwrsar
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.