| simu_multiscale | R Documentation | 
The simu_multiscale function is designed for simulating a spatially varying coefficient DGP (Data Generating Process) based on formulations proposed by Fotheringam et al. (2017), Gao et al. (2021), or Geniaux (2024).
simu_multiscale(n=1000,myseed=1,type='GG2024',constant=NULL,
nuls=NULL,config_beta='default',config_snr=0.7,config_eps='normal',
ratiotime=1)
| n | An integer number of observations | 
| myseed | An integer seed used for the simulation. | 
| type | Type of DGP used 'FT2017', 'Gao2021' or 'GG2024', default 'GG2024'. | 
| constant | A boolean parameter indicating whether the intercept term should be spatially varying (TRUE) or not (FALSE). | 
| nuls | A vector of null parameters, default NULL | 
| config_beta | name of the type of spatial pattern of Beta coefficients | 
| config_snr | a value of signal noise ratio | 
| config_eps | name of the distribution of error ('normal','unif' or 'Chi2') | 
| ratiotime | multiplicating factor, for spacetime DGP. | 
A named list with simulated data ('mydata') and coords ('coords')
 library(mgwrsar)
 library(ggplot2)
 library(gridExtra)
 library(grid)
 simu=simu_multiscale(1000)
 mydata=simu$mydata
 coords=simu$coords
 p1<-ggplot(mydata,aes(x,y,col=Beta1))+geom_point() +scale_color_viridis_c()
 p2<-ggplot(mydata,aes(x,y,col=Beta2))+geom_point() +scale_color_viridis_c()
 p3<-ggplot(mydata,aes(x,y,col=Beta3))+geom_point() +scale_color_viridis_c()
 p4<-ggplot(mydata,aes(x,y,col=Beta4))+geom_point() +scale_color_viridis_c()
 grid.arrange(p1,p2,p3,p4,nrow=2,ncol=2, top = textGrob("DGP Geniaux (2024)"
 ,gp=gpar(fontsize=20,font=3)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.