| rubin2.all | R Documentation | 
Computes the total variance-covariance component in the 2nd Rubin's rule for all peptides.
rubin2.all(
  data,
  metacond,
  funcmean = meanImp_emmeans,
  funcvar = within_variance_comp_emmeans,
  is.parallel = FALSE,
  verbose = FALSE
)
| data | dataset | 
| metacond | a factor to specify the groups | 
| funcmean | function that should be used to compute the mean | 
| funcvar | function that should be used to compute the variance | 
| is.parallel | should parallel computing be used? | 
| verbose | should messages be displayed? | 
List of variance-covariance matrices.
Frédéric Bertrand
M. Chion, Ch. Carapito and F. Bertrand (2021). Accounting for multiple imputation-induced variability for differential analysis in mass spectrometry-based label-free quantitative proteomics. \Sexpr[results=rd]{tools:::Rd_expr_doi("doi:10.1371/journal.pcbi.1010420")}.
library(mi4p)
data(datasim)
datasim_imp <- multi.impute(data = datasim[,-1], conditions = 
attr(datasim,"metadata")$Condition, method = "MLE")
rubin2.all(datasim_imp[1:5,,],attr(datasim,"metadata")$Condition)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.