View source: R/milags_functions.R
choose_lag_fit_algorithm_logistic | R Documentation |
Runs nlsLM/nls algorithms with three different parameter setups to fit the best Logistic model parameters to our data and chooses the best model
choose_lag_fit_algorithm_logistic(
gr_curve,
n0,
init_gr_rate = init_gr_rate,
init_K = init_K,
init_lag = init_lag,
max_iter = 100,
lower_bound = c(0, 0, 0)
)
gr_curve |
data from one specific growth curve with the following columns: LOG10N, t |
n0 |
the initial biomass |
init_gr_rate |
initial value for the growth rate |
init_K |
initial value for the saturation parameter K |
init_lag |
initial value for the lag parameter |
max_iter |
max. number of iterations; defaults to 100 |
lower_bound |
lower bound for the bounded nls optimization; defaults to 0 |
the best nls fitting object with parameters fitted to logistic model (lowest Res.Sum Sq provided that all coefficients are nonnegative)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.