View source: R/snqProfitCalc.R
| snqProfitCalc | R Documentation |
Calculation of netput quantities and profit with the Symmetric Normalized Quadratic (SNQ) Profit function.
snqProfitCalc( priceNames, fixNames, data, weights,
scalingFactors = rep( 1, length( weights ) ), coef,
quantNames = NULL, form = 0 )
priceNames |
a vector of strings containing the names of netput prices. |
fixNames |
an optional vector of strings containing the names of the quantities of (quasi-)fix inputs. |
data |
a data frame containing the data. |
weights |
vector of weights of the prices for normalization. |
quantNames |
optional vector of strings containing the names of netput quantities. |
scalingFactors |
factors to scale prices (and quantities). |
coef |
a list containing the coefficients alpha, beta, delta and gamma. |
form |
the functional form to be estimated (see |
a data frame: the first n columns are the netput quantities, the last column is the profit.
Arne Henningsen
Diewert, W.E. and T.J. Wales (1987) Flexible functional forms and global curvature conditions. Econometrica, 55, p. 43-68.
Diewert, W.E. and T.J. Wales (1992) Quadratic Spline Models for Producer's Supply and Demand Functions. International Economic Review, 33, p. 705-722.
Kohli, U.R. (1993) A symmetric normalized quadratic GNP function and the US demand for imports and supply of exports. International Economic Review, 34, p. 243-255.
snqProfitEst and snqProfitWeights.
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
germanFarms$time <- c( 0:19 )
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
fixNames <- c( "land", "time" )
estResult <- snqProfitEst( priceNames, quantNames, fixNames, data = germanFarms )
snqProfitCalc( priceNames, fixNames, estResult$data, estResult$weights,
estResult$scalingFactors, estResult$coef )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.