micss | R Documentation |
Implements the MICSS algorithm of Carrion-i-Silvestre & Sansó (2023).
micss(e,sig.lev=0.05,kmax=NULL,alpha=NULL,tail.est="NR",k=0.1)
e |
A numeric vector. Stationary variable on which the constancy of unconditional variance is tested. |
sig.lev |
Significance level. The default value is 0.05. |
kmax |
Maximum lag to be used for the estimation of the long-run fourth order moment. If not reported, an automatic procedure computes it depending on the sample size. |
alpha |
Tail index. If not reported, it is estimated automatically. |
tail.est |
Estimator of the tail index. The default value is "NR", which uses Nicolau & Rodrigues (2019) estimator. "Hill" uses the Hill's (1975) estimator. |
k |
Fraction of the upper tail to be used to estimate of the tail index. The default value is 0.1. |
The tail index is estimated using the absolute values.
icss |
An object with the output of the icss algorithm. |
alpha |
An object with the output of the estimate.alpha. |
J.L. Carrion-i-Silvestre and A. Sansó.
J.L. Carrion-i-Silvestre & A. Sansó (2023): Generalized Extreme Value Approximation to the CUMSUMQ Test for Constant Unconditional Variance in Heavy-Tailed Time Series.
B. Hill (1975): A Simple General Approach to Inference About the Tail of a Distribution. The Annals of Mathematical Statistics 3, 1163-1174.
J. Nicolau & P.M.M. Rodrigues (2019): A new regression-based tail index estimator. The Review of Economics and Statistics 101, 667-680.
icss
estimate.alpha
print.micss
plot.icss
set.seed(2)
e <- c(stats::rnorm(200),3*stats::rnorm(200))
o <- micss(e)
print.micss(o)
# The following example replicates some of the results of Table 6 in
# Carrion-i-Silvestres & Sanso (2023)
data(logReturnsRandDollar)
e <- whitening(data$rand.dollar)$e # pre-whitening
m <- micss(e)
print.micss(m)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.