Description Usage Arguments Details Value Author(s) References See Also Examples
Perform a test whether the restriction on MIDAS regression coefficients holds.
1 |
x |
MIDAS regression model with restricted coefficients, estimated with |
PHI |
the "meat" covariance matrix, defaults to |
Given MIDAS regression:
y_t=∑_{j=0}^k∑_{i=0}^{m-1}θ_{jm+i} x_{(t-j)m-i}+u_t
test the null hypothesis that the following restriction holds:
θ_h=g(h,λ),
where h=0,...,(k+1)m.
a htest
object
Virmantas Kvedaras, Vaidotas Zemlys
Kvedaras V., Zemlys, V. The statistical content and empirical testing of the MIDAS restrictions
hAh_test
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | ##The parameter function
theta_h0 <- function(p, dk, ...) {
i <- (1:dk-1)
(p[1] + p[2]*i)*exp(p[3]*i + p[4]*i^2)
}
##Generate coefficients
theta0 <- theta_h0(c(-0.1,0.1,-0.1,-0.001),4*12)
##Plot the coefficients
plot(theta0)
##Generate the predictor variable
set.seed(13)
xx <- ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)
##Simulate the response variable
y <- midas_sim(500, xx, theta0)
x <- window(xx, start=start(y))
##Fit restricted model
mr <- midas_r(y~fmls(x,4*12-1,12,theta_h0)-1,
list(y=y,x=x),
start=list(x=c(-0.1,0.1,-0.1,-0.001)))
##The gradient function
theta_h0_gradient <-function(p, dk,...) {
i <- (1:dk-1)
a <- exp(p[3]*i + p[4]*i^2)
cbind(a, a*i, a*i*(p[1]+p[2]*i), a*i^2*(p[1]+p[2]*i))
}
##Perform test (the expected result should be the acceptance of null)
hAhr_test(mr)
mr <- midas_r(y~fmls(x,4*12-1,12,theta_h0)-1,
list(y=y,x=x),
start=list(x=c(-0.1,0.1,-0.1,-0.001)),
weight_gradients=list())
##Use exact gradient. Note the
hAhr_test(mr)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.