Description Usage Arguments Value Author(s) Examples
Given the predictor variable, the weights and autoregressive coefficients, simulate MIDAS regression response variable.
1 2 3 4 5 6 7 8 9 10 | midas_auto_sim(
n,
alpha,
x,
theta,
rand_gen = rnorm,
innov = rand_gen(n, ...),
n_start = NA,
...
)
|
n |
sample size. |
alpha |
autoregressive coefficients. |
x |
a high frequency predictor variable. |
theta |
a vector with MIDAS weights for predictor variable. |
rand_gen |
a function to generate the innovations, default is the normal distribution. |
innov |
an optional time series of innovations. |
n_start |
number of observations to omit for the burn.in. |
... |
additional arguments to function |
a ts
object
Virmantas Kvedaras, Vaidotas Zemlys
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | theta_h0 <- function(p, dk) {
i <- (1:dk-1)/100
pol <- p[3]*i + p[4]*i^2
(p[1] + p[2]*i)*exp(pol)
}
##Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)
##Generate the predictor variable
xx <- ts(arima.sim(model = list(ar = 0.6), 1000 * 12), frequency = 12)
y <- midas_auto_sim(500, 0.5, xx, theta0, n_start = 200)
x <- window(xx, start=start(y))
midas_r(y ~ mls(y, 1, 1) + fmls(x, 4*12-1, 12, theta_h0), start = list(x = c(-0.1, 10, -10, -10)))
|
Loading required package: sandwich
Loading required package: optimx
Loading required package: quantreg
Loading required package: SparseM
Attaching package: 'SparseM'
The following object is masked from 'package:base':
backsolve
MIDAS regression model with "ts" data:
Start = 504, End = 1000
model: y ~ mls(y, 1, 1) + fmls(x, 4 * 12 - 1, 12, theta_h0)
(Intercept) y x1 x2 x3 x4
-0.004993 0.487545 -0.046211 8.165974 -8.315616 -12.032461
Function optim was used for fitting
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.