tests/testthat/_snaps/examples.md

build_fm(), kfm_exact(), kfm_nystrom() examples work

Code
  df <- data.frame(X1 = c(2, 3, 4, 5, 6, 7, 8), X2 = c(1, 1.2, 1.3, 1.4, 1.1, 7,
    1), X3 = rnorm(7))
  fit1 <- kfm_nystrom(df, m = 7, r = 6, kernel = "radial", sigma = 0.05)
  fm <- build_fm(fit1, df)
  fit2 <- kfm_exact(kernel = "polynomial", degree = 2, const = 1)
  fm <- build_fm(fit2, df)

cv_misvm() examples work

Code
  set.seed(8)
  mil_data <- generate_mild_df(nbag = 20, positive_prob = 0.15, dist = rep(
    "mvnormal", 3), mean = list(rep(1, 10), rep(2, 10)), sd_of_mean = rep(0.1, 3))
  df <- build_instance_feature(mil_data, seq(0.05, 0.95, length.out = 10))
  cost_seq <- 2^seq(-5, 7, length.out = 3)
  mdl1 <- cv_misvm(x = df[, 4:123], y = df$bag_label, bags = df$bag_name,
  cost_seq = cost_seq, n_fold = 3, method = "heuristic")
  mdl2 <- cv_misvm(mi(bag_label, bag_name) ~ X1_mean + X2_mean + X3_mean, data = df,
  cost_seq = cost_seq, n_fold = 3)
  if (require(gurobi)) {
    mdl3 <- cv_misvm(x = df[, 4:123], y = df$bag_label, bags = df$bag_name,
    cost_seq = cost_seq, n_fold = 3, method = "mip")
  }
Message <packageStartupMessage>
  Loading required package: gurobi
  Loading required package: slam
Code
  predict(mdl1, new_data = df, type = "raw", layer = "bag")
Output
  # A tibble: 80 x 1
     .pred
     <dbl>
   1 -1.00
   2 -1.00
   3 -1.00
   4 -1.00
   5  1.04
   6  1.04
   7  1.04
   8  1.04
   9 -1.13
  10 -1.13
  # ... with 70 more rows
Code
  df %>% dplyr::bind_cols(predict(mdl2, df, type = "class")) %>% dplyr::bind_cols(
    predict(mdl2, df, type = "raw")) %>% dplyr::distinct(bag_name, bag_label,
    .pred_class, .pred)
Output
     bag_label bag_name .pred_class      .pred
  1          0     bag1           0 -0.5932349
  2          1     bag2           1  0.7493612
  3          0     bag3           0 -0.9387030
  4          1     bag4           1  1.2126533
  5          0     bag5           0 -0.8094506
  6          0     bag6           0 -0.8083522
  7          1     bag7           1  0.6587946
  8          0     bag8           0 -0.9032079
  9          1     bag9           1  0.5855234
  10         1    bag10           1  1.2019300
  11         1    bag11           1  1.2689043
  12         0    bag12           0 -0.8143970
  13         1    bag13           1  0.8591738
  14         1    bag14           1  1.0000000
  15         1    bag15           1  1.1078369
  16         1    bag16           1  1.2117319
  17         0    bag17           0 -0.6022075
  18         1    bag18           1  0.9355648
  19         0    bag19           0 -0.7314129
  20         1    bag20           1  1.0393764

generate_mild_df() examples work

Code
  set.seed(8)
  mild_data <- generate_mild_df(nbag = 7, ninst = 3, nsample = 20, ncov = 2,
    nimp_pos = 1, dist = rep("mvnormal", 3), mean = list(rep(5, 1), rep(15, 2), 0))
  dplyr::distinct(mild_data, bag_label, bag_name, instance_name)
Output
  # An MILD data frame: 21 x 3 with 7 bags, 21 instances
  # and instance labels: 0, 0, 0, 0, 0, ...
     bag_label bag_name instance_name
         <dbl> <chr>    <chr>        
   1         0 bag1     bag1inst1    
   2         0 bag1     bag1inst2    
   3         0 bag1     bag1inst3    
   4         0 bag2     bag2inst1    
   5         0 bag2     bag2inst2    
   6         0 bag2     bag2inst3    
   7         1 bag3     bag3inst1    
   8         1 bag3     bag3inst2    
   9         1 bag3     bag3inst3    
  10         0 bag4     bag4inst1    
  # ... with 11 more rows
Code
  split(mild_data[, 4:5], mild_data$instance_name) %>% sapply(colMeans) %>% round(
    2) %>% t()
Warning <warning>
  Dropping 'mild_df' class as required column was removed.
Output
               X1    X2
  bag1inst1 14.95 14.63
  bag1inst2 15.53 15.42
  bag1inst3 14.27 16.08
  bag2inst1 15.29 15.01
  bag2inst2 15.78 14.87
  bag2inst3 14.53 15.71
  bag3inst1 14.79 14.83
  bag3inst2  5.36 -0.69
  bag3inst3 15.13 15.78
  bag4inst1 15.32 14.46
  bag4inst2 15.31 15.53
  bag4inst3 15.93 14.55
  bag5inst1 15.25 14.25
  bag5inst2 14.98 16.03
  bag5inst3 15.48 14.95
  bag6inst1  4.83  0.26
  bag6inst2 16.23 16.06
  bag6inst3 15.31 14.56
  bag7inst1 14.74 14.90
  bag7inst2 14.61 15.03
  bag7inst3 15.17 15.20

kme() examples work

Code
  x = data.frame(instance_name = c("inst_1", "inst_2", "inst_1"), X1 = c(-0.4,
    0.5, 2))
  kme(x)
Output
            [,1]      [,2]
  [1,] 0.8748808 0.9269533
  [2,] 0.9269533 1.0000000
Code
  mild_df1 <- generate_mild_df(nbag = 10, positive_degree = 3)
  kme(mild_df1)
Output
             [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
   [1,] 0.4169122 0.3523994 0.2999620 0.3919451 0.2671537 0.3808291 0.3178319
   [2,] 0.3523994 0.4001522 0.3488563 0.3862459 0.3258604 0.3828253 0.3553224
   [3,] 0.2999620 0.3488563 0.3830298 0.3729092 0.3410245 0.3829949 0.3563669
   [4,] 0.3919451 0.3862459 0.3729092 0.6736729 0.3829977 0.4622801 0.3786055
   [5,] 0.2671537 0.3258604 0.3410245 0.3829977 0.3866819 0.3438624 0.3125532
   [6,] 0.3808291 0.3828253 0.3829949 0.4622801 0.3438624 0.5928032 0.3992530
   [7,] 0.3178319 0.3553224 0.3563669 0.3786055 0.3125532 0.3992530 0.4072973
   [8,] 0.2886348 0.3157459 0.2987742 0.3711378 0.2682204 0.3401411 0.2749737
   [9,] 0.3872634 0.4011600 0.3740848 0.4325844 0.3109014 0.4722626 0.3594980
  [10,] 0.3086363 0.3301951 0.2900993 0.3880930 0.2750935 0.3674942 0.3147702
  [11,] 0.3300471 0.3715490 0.3490256 0.3765055 0.3468922 0.3911776 0.3134912
  [12,] 0.3496296 0.3733415 0.3661626 0.5378319 0.3513647 0.4593275 0.3566796
  [13,] 0.2643695 0.3083248 0.3592159 0.3650698 0.3075189 0.3443388 0.3521353
  [14,] 0.3510899 0.3496693 0.3579273 0.4438735 0.3136538 0.4244626 0.3410867
  [15,] 0.3306274 0.3505787 0.3460770 0.4034540 0.3067107 0.4154028 0.3552658
  [16,] 0.3547158 0.3407101 0.3166309 0.3790609 0.2549436 0.3913973 0.3093184
  [17,] 0.3413221 0.3310640 0.3056185 0.4769570 0.2984654 0.3205515 0.3010842
  [18,] 0.3385712 0.3715150 0.3362378 0.3772033 0.3236153 0.3631170 0.3673017
  [19,] 0.3274643 0.3157874 0.3209078 0.3923291 0.2950952 0.3912085 0.3039875
  [20,] 0.3024896 0.3319636 0.3544274 0.3987057 0.3375483 0.4542176 0.3624589
  [21,] 0.3037886 0.3305133 0.3058440 0.4023323 0.2933122 0.3999505 0.3038551
  [22,] 0.4046782 0.4063992 0.3687206 0.4748479 0.3561605 0.5333569 0.3857608
  [23,] 0.2921442 0.3529623 0.2947198 0.3825395 0.2826722 0.3598854 0.2964741
  [24,] 0.3670381 0.3722187 0.3556825 0.4504677 0.3279440 0.4540149 0.3728457
  [25,] 0.3293533 0.3842095 0.3365811 0.3505797 0.3083936 0.3654656 0.3492568
  [26,] 0.4514919 0.4317108 0.3776675 0.5362912 0.3806510 0.4668916 0.3974679
  [27,] 0.3072870 0.3522197 0.3407901 0.4046125 0.3505049 0.3589900 0.3183809
  [28,] 0.3351851 0.3453512 0.3313021 0.4664949 0.3088645 0.4280774 0.3465275
  [29,] 0.4277095 0.3869842 0.3158980 0.4345843 0.2831570 0.3771593 0.3238047
  [30,] 0.3918940 0.4233512 0.3803228 0.5079662 0.3517907 0.4494309 0.3917467
  [31,] 0.3209992 0.3356011 0.3067535 0.3937972 0.2606738 0.3971114 0.3341408
  [32,] 0.3304344 0.3615479 0.3098770 0.3813640 0.3323581 0.3808892 0.3229543
  [33,] 0.3633943 0.3933628 0.4126571 0.4078071 0.3401322 0.4569400 0.3942821
  [34,] 0.3187196 0.3354348 0.3444837 0.4187835 0.3351518 0.3974189 0.3215929
  [35,] 0.3067201 0.3295164 0.3086434 0.4358080 0.2989232 0.3744900 0.3193445
  [36,] 0.3709173 0.3094088 0.2352705 0.3380354 0.2257843 0.3056635 0.2402585
  [37,] 0.3747756 0.3482068 0.3025652 0.4241205 0.2659261 0.4055969 0.3187351
  [38,] 0.3645088 0.3434428 0.3443278 0.3946202 0.2756704 0.4240096 0.3299400
  [39,] 0.3080024 0.3640326 0.3355290 0.3848462 0.2924023 0.3766813 0.3508378
  [40,] 0.4362794 0.4125146 0.3767652 0.4305746 0.3363838 0.4993309 0.3431162
             [,8]      [,9]     [,10]     [,11]     [,12]     [,13]     [,14]
   [1,] 0.2886348 0.3872634 0.3086363 0.3300471 0.3496296 0.2643695 0.3510899
   [2,] 0.3157459 0.4011600 0.3301951 0.3715490 0.3733415 0.3083248 0.3496693
   [3,] 0.2987742 0.3740848 0.2900993 0.3490256 0.3661626 0.3592159 0.3579273
   [4,] 0.3711378 0.4325844 0.3880930 0.3765055 0.5378319 0.3650698 0.4438735
   [5,] 0.2682204 0.3109014 0.2750935 0.3468922 0.3513647 0.3075189 0.3136538
   [6,] 0.3401411 0.4722626 0.3674942 0.3911776 0.4593275 0.3443388 0.4244626
   [7,] 0.2749737 0.3594980 0.3147702 0.3134912 0.3566796 0.3521353 0.3410867
   [8,] 0.3827260 0.3907545 0.2988163 0.3308321 0.3751270 0.2927895 0.3424322
   [9,] 0.3907545 0.5245163 0.3503800 0.3956145 0.4558087 0.3169918 0.4143504
  [10,] 0.2988163 0.3503800 0.3778166 0.3133673 0.3854424 0.2845932 0.3253879
  [11,] 0.3308321 0.3956145 0.3133673 0.4192976 0.3827056 0.3105342 0.3439707
  [12,] 0.3751270 0.4558087 0.3854424 0.3827056 0.5381580 0.3410197 0.4040592
  [13,] 0.2927895 0.3169918 0.2845932 0.3105342 0.3410197 0.4152752 0.3384331
  [14,] 0.3424322 0.4143504 0.3253879 0.3439707 0.4040592 0.3384331 0.4227283
  [15,] 0.3529021 0.4052576 0.3318198 0.3378625 0.3899277 0.3435705 0.3792346
  [16,] 0.3247552 0.4200867 0.3237023 0.3466853 0.3903709 0.3004923 0.3533612
  [17,] 0.3023912 0.3428421 0.3114730 0.3110601 0.3819310 0.3000919 0.3629485
  [18,] 0.2923464 0.3394161 0.3164056 0.3531750 0.3375635 0.3346717 0.3247464
  [19,] 0.2713716 0.3836950 0.2482132 0.3223733 0.3761191 0.2686236 0.3305258
  [20,] 0.2857859 0.3744232 0.3174561 0.3395988 0.3984483 0.3315578 0.3550107
  [21,] 0.2627253 0.3836853 0.2795323 0.3301624 0.3831656 0.2488448 0.3148869
  [22,] 0.3406292 0.4621339 0.3923090 0.3955028 0.4495619 0.3141189 0.4283485
  [23,] 0.3157345 0.3856858 0.3494546 0.3538506 0.3917857 0.2697028 0.3082309
  [24,] 0.3275562 0.4251279 0.3382506 0.3577489 0.4262159 0.3256938 0.3830319
  [25,] 0.3231252 0.3904057 0.3485463 0.3771474 0.3788117 0.3159366 0.3161134
  [26,] 0.3373112 0.4363885 0.4001063 0.4178917 0.4635879 0.3431673 0.4212106
  [27,] 0.3388433 0.3562988 0.3225072 0.3660954 0.3718644 0.3297816 0.3608778
  [28,] 0.2935088 0.3908359 0.3247119 0.3233924 0.4104011 0.3010204 0.3750590
  [29,] 0.3255437 0.4056847 0.3709777 0.3798311 0.3901575 0.3028651 0.3793250
  [30,] 0.3773517 0.4505271 0.4349212 0.4046103 0.4724630 0.3729573 0.4305713
  [31,] 0.3151219 0.4048709 0.3019086 0.2964317 0.3670353 0.2776221 0.3516817
  [32,] 0.3101098 0.3605160 0.3237806 0.3617166 0.3625330 0.2743012 0.3224096
  [33,] 0.3271257 0.4471554 0.3090527 0.3839613 0.3851377 0.3774804 0.4184469
  [34,] 0.3434242 0.3851384 0.2983263 0.3592944 0.3967367 0.3314950 0.3647405
  [35,] 0.3355117 0.3918822 0.3211793 0.3102746 0.4325159 0.2788364 0.3399177
  [36,] 0.2370985 0.3357440 0.2703925 0.2874996 0.2988993 0.1794404 0.2905320
  [37,] 0.3102639 0.4125572 0.3560512 0.3232770 0.4074992 0.2703437 0.3675738
  [38,] 0.3191465 0.4189078 0.3061028 0.3536871 0.3836219 0.3285568 0.3830229
  [39,] 0.3091127 0.3884269 0.3297345 0.3310730 0.3640645 0.3208774 0.3476835
  [40,] 0.3742521 0.5217239 0.3386285 0.4284365 0.4327775 0.2919186 0.4346810
            [,15]     [,16]     [,17]     [,18]     [,19]     [,20]     [,21]
   [1,] 0.3306274 0.3547158 0.3413221 0.3385712 0.3274643 0.3024896 0.3037886
   [2,] 0.3505787 0.3407101 0.3310640 0.3715150 0.3157874 0.3319636 0.3305133
   [3,] 0.3460770 0.3166309 0.3056185 0.3362378 0.3209078 0.3544274 0.3058440
   [4,] 0.4034540 0.3790609 0.4769570 0.3772033 0.3923291 0.3987057 0.4023323
   [5,] 0.3067107 0.2549436 0.2984654 0.3236153 0.2950952 0.3375483 0.2933122
   [6,] 0.4154028 0.3913973 0.3205515 0.3631170 0.3912085 0.4542176 0.3999505
   [7,] 0.3552658 0.3093184 0.3010842 0.3673017 0.3039875 0.3624589 0.3038551
   [8,] 0.3529021 0.3247552 0.3023912 0.2923464 0.2713716 0.2857859 0.2627253
   [9,] 0.4052576 0.4200867 0.3428421 0.3394161 0.3836950 0.3744232 0.3836853
  [10,] 0.3318198 0.3237023 0.3114730 0.3164056 0.2482132 0.3174561 0.2795323
  [11,] 0.3378625 0.3466853 0.3110601 0.3531750 0.3223733 0.3395988 0.3301624
  [12,] 0.3899277 0.3903709 0.3819310 0.3375635 0.3761191 0.3984483 0.3831656
  [13,] 0.3435705 0.3004923 0.3000919 0.3346717 0.2686236 0.3315578 0.2488448
  [14,] 0.3792346 0.3533612 0.3629485 0.3247464 0.3305258 0.3550107 0.3148869
  [15,] 0.4029821 0.3329319 0.3200534 0.3483374 0.3092085 0.3560920 0.2891205
  [16,] 0.3329319 0.4072145 0.3136260 0.3063168 0.3153526 0.3135427 0.3179032
  [17,] 0.3200534 0.3136260 0.4178473 0.3216383 0.2921914 0.2881410 0.2887689
  [18,] 0.3483374 0.3063168 0.3216383 0.4130369 0.2840406 0.3254596 0.2799843
  [19,] 0.3092085 0.3153526 0.2921914 0.2840406 0.3959299 0.3322660 0.3393178
  [20,] 0.3560920 0.3135427 0.2881410 0.3254596 0.3322660 0.4044005 0.3257537
  [21,] 0.2891205 0.3179032 0.2887689 0.2799843 0.3393178 0.3257537 0.4047794
  [22,] 0.4091661 0.3738722 0.3595939 0.3721547 0.3633162 0.4213864 0.3880263
  [23,] 0.3054019 0.3466469 0.3022233 0.3044542 0.2604175 0.2995181 0.3488779
  [24,] 0.3812947 0.3548821 0.3396105 0.3582028 0.3601843 0.3795341 0.3540605
  [25,] 0.3478419 0.3491553 0.2969050 0.3747642 0.2905926 0.3273992 0.3005663
  [26,] 0.3904225 0.3992663 0.4359671 0.4253176 0.3837960 0.3945064 0.3896817
  [27,] 0.3585833 0.3014212 0.3401771 0.3509750 0.2805411 0.3273872 0.2782515
  [28,] 0.3428719 0.3314276 0.3467582 0.3160977 0.3306523 0.3545179 0.3646012
  [29,] 0.3394214 0.4170320 0.3993973 0.3675633 0.3038418 0.3064804 0.3261697
  [30,] 0.4099238 0.4139901 0.4213449 0.3990849 0.3207753 0.3835597 0.3628194
  [31,] 0.3567115 0.3172887 0.3049912 0.3059889 0.3020181 0.3197710 0.3215577
  [32,] 0.3483399 0.2912989 0.3062592 0.3634603 0.2945235 0.3313570 0.2940884
  [33,] 0.3816499 0.3762535 0.3381053 0.3651828 0.3660556 0.3826280 0.3621237
  [34,] 0.3678903 0.3200297 0.3223298 0.3341906 0.3314275 0.3497056 0.2945803
  [35,] 0.3583229 0.3023115 0.3210037 0.3041208 0.3219870 0.3326105 0.3030481
  [36,] 0.2544942 0.3001889 0.3109006 0.2631206 0.2796083 0.2363907 0.2927193
  [37,] 0.3423002 0.3730642 0.3483797 0.3060860 0.3134191 0.3240729 0.3292184
  [38,] 0.3477659 0.3961409 0.3230067 0.3213942 0.3424865 0.3367813 0.3246403
  [39,] 0.3423561 0.3343108 0.3173556 0.3336023 0.2765495 0.3222561 0.3275091
  [40,] 0.3966873 0.4149241 0.3552640 0.3474666 0.4134704 0.3821023 0.3961611
            [,22]     [,23]     [,24]     [,25]     [,26]     [,27]     [,28]
   [1,] 0.4046782 0.2921442 0.3670381 0.3293533 0.4514919 0.3072870 0.3351851
   [2,] 0.4063992 0.3529623 0.3722187 0.3842095 0.4317108 0.3522197 0.3453512
   [3,] 0.3687206 0.2947198 0.3556825 0.3365811 0.3776675 0.3407901 0.3313021
   [4,] 0.4748479 0.3825395 0.4504677 0.3505797 0.5362912 0.4046125 0.4664949
   [5,] 0.3561605 0.2826722 0.3279440 0.3083936 0.3806510 0.3505049 0.3088645
   [6,] 0.5333569 0.3598854 0.4540149 0.3654656 0.4668916 0.3589900 0.4280774
   [7,] 0.3857608 0.2964741 0.3728457 0.3492568 0.3974679 0.3183809 0.3465275
   [8,] 0.3406292 0.3157345 0.3275562 0.3231252 0.3373112 0.3388433 0.2935088
   [9,] 0.4621339 0.3856858 0.4251279 0.3904057 0.4363885 0.3562988 0.3908359
  [10,] 0.3923090 0.3494546 0.3382506 0.3485463 0.4001063 0.3225072 0.3247119
  [11,] 0.3955028 0.3538506 0.3577489 0.3771474 0.4178917 0.3660954 0.3233924
  [12,] 0.4495619 0.3917857 0.4262159 0.3788117 0.4635879 0.3718644 0.4104011
  [13,] 0.3141189 0.2697028 0.3256938 0.3159366 0.3431673 0.3297816 0.3010204
  [14,] 0.4283485 0.3082309 0.3830319 0.3161134 0.4212106 0.3608778 0.3750590
  [15,] 0.4091661 0.3054019 0.3812947 0.3478419 0.3904225 0.3585833 0.3428719
  [16,] 0.3738722 0.3466469 0.3548821 0.3491553 0.3992663 0.3014212 0.3314276
  [17,] 0.3595939 0.3022233 0.3396105 0.2969050 0.4359671 0.3401771 0.3467582
  [18,] 0.3721547 0.3044542 0.3582028 0.3747642 0.4253176 0.3509750 0.3160977
  [19,] 0.3633162 0.2604175 0.3601843 0.2905926 0.3837960 0.2805411 0.3306523
  [20,] 0.4213864 0.2995181 0.3795341 0.3273992 0.3945064 0.3273872 0.3545179
  [21,] 0.3880263 0.3488779 0.3540605 0.3005663 0.3896817 0.2782515 0.3646012
  [22,] 0.5630475 0.3753065 0.4449969 0.3733252 0.5032117 0.3874373 0.4322735
  [23,] 0.3753065 0.4471016 0.3311823 0.3651890 0.3853135 0.3199225 0.3380487
  [24,] 0.4449969 0.3311823 0.4151443 0.3564034 0.4466317 0.3462490 0.3836512
  [25,] 0.3733252 0.3651890 0.3564034 0.4298102 0.4069444 0.3413267 0.3100067
  [26,] 0.5032117 0.3853135 0.4466317 0.4069444 0.5818781 0.4032938 0.4299712
  [27,] 0.3874373 0.3199225 0.3462490 0.3413267 0.4032938 0.3995114 0.3234780
  [28,] 0.4322735 0.3380487 0.3836512 0.3100067 0.4299712 0.3234780 0.4043163
  [29,] 0.4160148 0.3796291 0.3704163 0.3798308 0.5021081 0.3503216 0.3583275
  [30,] 0.4824457 0.4395676 0.4209159 0.4195498 0.5101399 0.4143516 0.4201927
  [31,] 0.3968881 0.3119012 0.3654678 0.3098126 0.3696027 0.3010211 0.3550438
  [32,] 0.4147757 0.3143400 0.3609095 0.3576175 0.4206899 0.3590449 0.3179471
  [33,] 0.4358190 0.3327537 0.4046812 0.3552375 0.4318491 0.3590810 0.3871017
  [34,] 0.3851446 0.2917805 0.3678323 0.3276997 0.3922857 0.3619419 0.3271772
  [35,] 0.3826448 0.3047897 0.3715418 0.3309257 0.3824156 0.3248125 0.3375729
  [36,] 0.3627135 0.2818273 0.3044356 0.2729893 0.4067361 0.2578816 0.2968476
  [37,] 0.4269345 0.3464054 0.3738811 0.3354771 0.4384104 0.3105591 0.3670421
  [38,] 0.3923521 0.3149255 0.3712310 0.3314089 0.4082615 0.3153282 0.3489113
  [39,] 0.3864728 0.3746239 0.3510428 0.3499524 0.3858336 0.3302087 0.3543242
  [40,] 0.5149685 0.3622524 0.4349479 0.3730711 0.4803461 0.3754398 0.3987842
            [,29]     [,30]     [,31]     [,32]     [,33]     [,34]     [,35]
   [1,] 0.4277095 0.3918940 0.3209992 0.3304344 0.3633943 0.3187196 0.3067201
   [2,] 0.3869842 0.4233512 0.3356011 0.3615479 0.3933628 0.3354348 0.3295164
   [3,] 0.3158980 0.3803228 0.3067535 0.3098770 0.4126571 0.3444837 0.3086434
   [4,] 0.4345843 0.5079662 0.3937972 0.3813640 0.4078071 0.4187835 0.4358080
   [5,] 0.2831570 0.3517907 0.2606738 0.3323581 0.3401322 0.3351518 0.2989232
   [6,] 0.3771593 0.4494309 0.3971114 0.3808892 0.4569400 0.3974189 0.3744900
   [7,] 0.3238047 0.3917467 0.3341408 0.3229543 0.3942821 0.3215929 0.3193445
   [8,] 0.3255437 0.3773517 0.3151219 0.3101098 0.3271257 0.3434242 0.3355117
   [9,] 0.4056847 0.4505271 0.4048709 0.3605160 0.4471554 0.3851384 0.3918822
  [10,] 0.3709777 0.4349212 0.3019086 0.3237806 0.3090527 0.2983263 0.3211793
  [11,] 0.3798311 0.4046103 0.2964317 0.3617166 0.3839613 0.3592944 0.3102746
  [12,] 0.3901575 0.4724630 0.3670353 0.3625330 0.3851377 0.3967367 0.4325159
  [13,] 0.3028651 0.3729573 0.2776221 0.2743012 0.3774804 0.3314950 0.2788364
  [14,] 0.3793250 0.4305713 0.3516817 0.3224096 0.4184469 0.3647405 0.3399177
  [15,] 0.3394214 0.4099238 0.3567115 0.3483399 0.3816499 0.3678903 0.3583229
  [16,] 0.4170320 0.4139901 0.3172887 0.2912989 0.3762535 0.3200297 0.3023115
  [17,] 0.3993973 0.4213449 0.3049912 0.3062592 0.3381053 0.3223298 0.3210037
  [18,] 0.3675633 0.3990849 0.3059889 0.3634603 0.3651828 0.3341906 0.3041208
  [19,] 0.3038418 0.3207753 0.3020181 0.2945235 0.3660556 0.3314275 0.3219870
  [20,] 0.3064804 0.3835597 0.3197710 0.3313570 0.3826280 0.3497056 0.3326105
  [21,] 0.3261697 0.3628194 0.3215577 0.2940884 0.3621237 0.2945803 0.3030481
  [22,] 0.4160148 0.4824457 0.3968881 0.4147757 0.4358190 0.3851446 0.3826448
  [23,] 0.3796291 0.4395676 0.3119012 0.3143400 0.3327537 0.2917805 0.3047897
  [24,] 0.3704163 0.4209159 0.3654678 0.3609095 0.4046812 0.3678323 0.3715418
  [25,] 0.3798308 0.4195498 0.3098126 0.3576175 0.3552375 0.3276997 0.3309257
  [26,] 0.5021081 0.5101399 0.3696027 0.4206899 0.4318491 0.3922857 0.3824156
  [27,] 0.3503216 0.4143516 0.3010211 0.3590449 0.3590810 0.3619419 0.3248125
  [28,] 0.3583275 0.4201927 0.3550438 0.3179471 0.3871017 0.3271772 0.3375729
  [29,] 0.5562114 0.4896433 0.3201169 0.3412564 0.3858215 0.3268655 0.2998863
  [30,] 0.4896433 0.5604001 0.3818702 0.3887106 0.4317382 0.3790934 0.3781906
  [31,] 0.3201169 0.3818702 0.3813176 0.3107423 0.3666519 0.3145105 0.3413322
  [32,] 0.3412564 0.3887106 0.3107423 0.4028639 0.3279293 0.3447714 0.3375131
  [33,] 0.3858215 0.4317382 0.3666519 0.3279293 0.5115058 0.3683147 0.3183061
  [34,] 0.3268655 0.3790934 0.3145105 0.3447714 0.3683147 0.3886675 0.3474166
  [35,] 0.2998863 0.3781906 0.3413322 0.3375131 0.3183061 0.3474166 0.4157505
  [36,] 0.3992034 0.3401047 0.2711894 0.2902113 0.2902643 0.2515062 0.2591211
  [37,] 0.4197093 0.4377885 0.3444593 0.3202151 0.3562870 0.3131996 0.3377408
  [38,] 0.4048258 0.4059210 0.3258159 0.2927319 0.4211501 0.3429983 0.2983918
  [39,] 0.3608347 0.4316374 0.3462349 0.3132448 0.3930252 0.3068435 0.3068626
  [40,] 0.4386672 0.4426953 0.3904327 0.3934714 0.4677351 0.4012890 0.3686771
            [,36]     [,37]     [,38]     [,39]     [,40]
   [1,] 0.3709173 0.3747756 0.3645088 0.3080024 0.4362794
   [2,] 0.3094088 0.3482068 0.3434428 0.3640326 0.4125146
   [3,] 0.2352705 0.3025652 0.3443278 0.3355290 0.3767652
   [4,] 0.3380354 0.4241205 0.3946202 0.3848462 0.4305746
   [5,] 0.2257843 0.2659261 0.2756704 0.2924023 0.3363838
   [6,] 0.3056635 0.4055969 0.4240096 0.3766813 0.4993309
   [7,] 0.2402585 0.3187351 0.3299400 0.3508378 0.3431162
   [8,] 0.2370985 0.3102639 0.3191465 0.3091127 0.3742521
   [9,] 0.3357440 0.4125572 0.4189078 0.3884269 0.5217239
  [10,] 0.2703925 0.3560512 0.3061028 0.3297345 0.3386285
  [11,] 0.2874996 0.3232770 0.3536871 0.3310730 0.4284365
  [12,] 0.2988993 0.4074992 0.3836219 0.3640645 0.4327775
  [13,] 0.1794404 0.2703437 0.3285568 0.3208774 0.2919186
  [14,] 0.2905320 0.3675738 0.3830229 0.3476835 0.4346810
  [15,] 0.2544942 0.3423002 0.3477659 0.3423561 0.3966873
  [16,] 0.3001889 0.3730642 0.3961409 0.3343108 0.4149241
  [17,] 0.3109006 0.3483797 0.3230067 0.3173556 0.3552640
  [18,] 0.2631206 0.3060860 0.3213942 0.3336023 0.3474666
  [19,] 0.2796083 0.3134191 0.3424865 0.2765495 0.4134704
  [20,] 0.2363907 0.3240729 0.3367813 0.3222561 0.3821023
  [21,] 0.2927193 0.3292184 0.3246403 0.3275091 0.3961611
  [22,] 0.3627135 0.4269345 0.3923521 0.3864728 0.5149685
  [23,] 0.2818273 0.3464054 0.3149255 0.3746239 0.3622524
  [24,] 0.3044356 0.3738811 0.3712310 0.3510428 0.4349479
  [25,] 0.2729893 0.3354771 0.3314089 0.3499524 0.3730711
  [26,] 0.4067361 0.4384104 0.4082615 0.3858336 0.4803461
  [27,] 0.2578816 0.3105591 0.3153282 0.3302087 0.3754398
  [28,] 0.2968476 0.3670421 0.3489113 0.3543242 0.3987842
  [29,] 0.3992034 0.4197093 0.4048258 0.3608347 0.4386672
  [30,] 0.3401047 0.4377885 0.4059210 0.4316374 0.4426953
  [31,] 0.2711894 0.3444593 0.3258159 0.3462349 0.3904327
  [32,] 0.2902113 0.3202151 0.2927319 0.3132448 0.3934714
  [33,] 0.2902643 0.3562870 0.4211501 0.3930252 0.4677351
  [34,] 0.2515062 0.3131996 0.3429983 0.3068435 0.4012890
  [35,] 0.2591211 0.3377408 0.2983918 0.3068626 0.3686771
  [36,] 0.4220373 0.3496548 0.2905701 0.2660560 0.4066057
  [37,] 0.3496548 0.4139086 0.3615792 0.3398438 0.4231177
  [38,] 0.2905701 0.3615792 0.4243788 0.3349206 0.4348109
  [39,] 0.2660560 0.3398438 0.3349206 0.3967751 0.3664759
  [40,] 0.4066057 0.4231177 0.4348109 0.3664759 0.6118455

mi_df() examples work

Code
  mi_df(bag_label = factor(c(1, 1, 0)), bag_name = c(rep("bag_1", 2), "bag_2"),
  X1 = c(-0.4, 0.5, 2), instance_label = c(0, 1, 0))
Output
  # An MI data frame: 3 x 3 with 2 bags
  # and instance labels: 0, 1, 0
    bag_label bag_name    X1
    <fct>     <chr>    <dbl>
  1 1         bag_1     -0.4
  2 1         bag_1      0.5
  3 0         bag_2      2

mi() examples work

Code
  mil_data <- generate_mild_df(positive_degree = 3, nbag = 10)
  with(mil_data, head(mi(bag_label, bag_name)))
Output
       bag_label bag_name
  [1,] "1"       "bag1"  
  [2,] "1"       "bag1"  
  [3,] "1"       "bag1"  
  [4,] "1"       "bag1"  
  [5,] "1"       "bag1"  
  [6,] "1"       "bag1"  
Code
  df <- get_all_vars(mi(bag_label, bag_name) ~ X1 + X2, data = mil_data)
  head(df)
Output
    bag_label bag_name         X1         X2
  1         1     bag1 -0.4464099  1.1019817
  2         1     bag1  1.2311306 -0.8395224
  3         1     bag1  0.9309844  2.2884239
  4         1     bag1  2.0311929  2.1704369
  5         1     bag1  0.5209816 -1.1255467
  6         1     bag1 -0.4920105  2.4251912

mild_df() examples work

Code
  mild_df(bag_label = factor(c(1, 1, 0)), bag_name = c(rep("bag_1", 2), "bag_2"),
  instance_name = c("bag_1_inst_1", "bag_1_inst_2", "bag_2_inst_1"), X1 = c(-0.4,
    0.5, 2), instance_label = c(0, 1, 0))
Output
  # An MILD data frame: 3 x 4 with 2 bags, 3 instances
  # and instance labels: 0, 1, 0
    bag_label bag_name instance_name    X1
    <fct>     <chr>    <chr>         <dbl>
  1 1         bag_1    bag_1_inst_1   -0.4
  2 1         bag_1    bag_1_inst_2    0.5
  3 0         bag_2    bag_2_inst_1    2

mild() examples work

Code
  mil_data <- generate_mild_df(positive_degree = 3, nbag = 10)
  with(mil_data, head(mild(bag_label, bag_name, instance_name)))
Output
       bag_label bag_name instance_name
  [1,] "1"       "bag1"   "bag1inst1"  
  [2,] "1"       "bag1"   "bag1inst1"  
  [3,] "1"       "bag1"   "bag1inst1"  
  [4,] "1"       "bag1"   "bag1inst1"  
  [5,] "1"       "bag1"   "bag1inst1"  
  [6,] "1"       "bag1"   "bag1inst1"  
Code
  df <- get_all_vars(mild(bag_label, bag_name) ~ X1 + X2, data = mil_data)
  head(df)
Output
    bag_label bag_name          X1         X2
  1         1     bag1  0.36529504 -0.3713889
  2         1     bag1  0.07733708 -0.5885037
  3         1     bag1 -1.59611098  0.3456669
  4         1     bag1 -0.16911543  1.4814259
  5         1     bag1 -0.85251086 -2.6362243
  6         1     bag1  1.40033082 -1.1679564

mior() examples work

Code
  if (require(gurobi)) {
    set.seed(8)
    n <- 15
    X <- rbind(mvtnorm::rmvnorm(n / 3, mean = c(4, -2, 0)), mvtnorm::rmvnorm(n /
    3, mean = c(0, 0, 0)), mvtnorm::rmvnorm(n / 3, mean = c(-2, 1, 0)))
    score <- X %*% c(2, -1, 0)
    y <- as.numeric(cut(score, c(-Inf, quantile(score, probs = 1:2 / 3), Inf)))
    bags <- seq_along(y)
    X <- rbind(X, mvtnorm::rmvnorm(n, mean = c(6, -3, 0)), mvtnorm::rmvnorm(n,
      mean = c(-6, 3, 0)))
    y <- c(y, rep(-1, 2 * n))
    bags <- rep(bags, 3)
    repr <- c(rep(1, n), rep(0, 2 * n))
    y_bag <- classify_bags(y, bags, condense = FALSE)
    mdl1 <- mior(X, y_bag, bags)
    predict(mdl1, X, new_bags = bags)
    df1 <- dplyr::bind_cols(y = y_bag, bags = bags, as.data.frame(X))
    df1 %>% dplyr::bind_cols(predict(mdl1, df1, new_bags = bags, type = "class")) %>%
      dplyr::bind_cols(predict(mdl1, df1, new_bags = bags, type = "raw")) %>%
      dplyr::distinct(y, bags, .pred_class, .pred)
  }
Message <message>
  [Step 1] The optimization solution suggests that two intercepts are equal: b[1] == b[2].
  [Step 1] The optimization solution suggests that two intercepts are equal: b[2] == b[3].
Warning <warning>
  [Step 1] There were NA values in `b`.  Replacing with 0.
Message <message>
  [Step 2] The optimization solution suggests that two intercepts are equal: b[0] == b[1].
  [Step 2] The optimization solution suggests that two intercepts are equal: b[1] == b[2].
  [Step 2] The optimization solution suggests that two intercepts are equal: b[2] == b[3].
  [Step 2] The optimization solution suggests that endpoints are equal: b[0] == b[K].
  [Step 3] The optimization solution suggests that two intercepts are equal: b[1] == b[2].
  [Step 3] The optimization solution suggests that two intercepts are equal: b[2] == b[3].
Warning <warning>
  [Step 3] There were NA values in `b`.  Replacing with 0.
Output
     y bags .pred_class       .pred
  1  3    1           2 -1.27106961
  2  3    2           2 -1.46009539
  3  3    3           1  0.55859958
  4  3    4           2 -2.14449120
  5  3    5           2 -2.39500843
  6  1    6           2 -1.35396484
  7  2    7           2 -1.52776943
  8  2    8           1 -0.27197967
  9  2    9           1 -0.03922016
  10 2   10           1  1.13574924
  11 1   11           1  1.81787187
  12 1   12           1  0.86516230
  13 2   13           1  0.33191616
  14 1   14           2 -1.86835119
  15 1   15           1  0.03157952

mismm() example works

Code
  set.seed(8)
  mil_data <- generate_mild_df(nbag = 15, nsample = 20, positive_prob = 0.15,
    sd_of_mean = rep(0.1, 3))
  mdl1 <- mismm(mil_data)
  mdl2 <- mismm(mild(bag_label, bag_name, instance_name) ~ X1 + X2 + X3, data = mil_data)
  if (require(gurobi)) {
    mdl3 <- mismm(mil_data, method = "mip", control = list(nystrom_args = list(m = 10,
      r = 10)))
    predict(mdl3, mil_data)
  }
Output
  # A tibble: 1,200 x 1
     .pred_class
     <fct>      
   1 1          
   2 1          
   3 1          
   4 1          
   5 1          
   6 1          
   7 1          
   8 1          
   9 1          
  10 1          
  # ... with 1,190 more rows
Code
  predict(mdl1, new_data = mil_data, type = "raw", layer = "bag")
Output
  # A tibble: 1,200 x 1
      .pred
      <dbl>
   1 -0.289
   2 -0.289
   3 -0.289
   4 -0.289
   5 -0.289
   6 -0.289
   7 -0.289
   8 -0.289
   9 -0.289
  10 -0.289
  # ... with 1,190 more rows
Code
  mil_data %>% dplyr::bind_cols(predict(mdl2, mil_data, type = "class")) %>%
    dplyr::bind_cols(predict(mdl2, mil_data, type = "raw")) %>% dplyr::distinct(
    bag_name, bag_label, .pred_class, .pred)
Output
  # A tibble: 15 x 4
     bag_label bag_name .pred_class   .pred
         <dbl> <chr>    <fct>         <dbl>
   1         0 bag1     0           -0.120 
   2         1 bag2     1            0.211 
   3         0 bag3     0           -0.0939
   4         1 bag4     1            0.0945
   5         0 bag5     0           -0.0922
   6         0 bag6     0           -0.134 
   7         1 bag7     1            0.155 
   8         0 bag8     0           -0.0408
   9         1 bag9     1            0.169 
  10         1 bag10    1            0.250 
  11         1 bag11    1            0.137 
  12         0 bag12    0           -0.0584
  13         1 bag13    1            0.173 
  14         1 bag14    1            0.143 
  15         1 bag15    1            0.329

predict.mismm() examples work

Code
  mil_data <- generate_mild_df(nbag = 15, nsample = 20, positive_prob = 0.15,
    sd_of_mean = rep(0.1, 3))
  mdl1 <- mismm(mil_data, control = list(sigma = 1 / 5))
  mil_data %>% dplyr::bind_cols(predict(mdl1, mil_data, type = "class")) %>%
    dplyr::bind_cols(predict(mdl1, mil_data, type = "raw")) %>% dplyr::distinct(
    bag_name, bag_label, .pred_class, .pred)
Output
  # A tibble: 15 x 4
     bag_label bag_name .pred_class   .pred
         <dbl> <chr>    <fct>         <dbl>
   1         0 bag1     0           -0.377 
   2         1 bag2     1            0.283 
   3         0 bag3     0           -0.332 
   4         1 bag4     1            0.132 
   5         0 bag5     0           -0.335 
   6         0 bag6     0           -0.248 
   7         1 bag7     1            0.261 
   8         0 bag8     0           -0.0604
   9         1 bag9     1            0.379 
  10         1 bag10    1            0.392 
  11         1 bag11    1            0.301 
  12         0 bag12    0           -0.282 
  13         1 bag13    1            0.326 
  14         1 bag14    1            0.223 
  15         1 bag15    1            0.459 
Code
  mil_data %>% dplyr::bind_cols(predict(mdl1, mil_data, type = "class", layer = "instance")) %>%
    dplyr::bind_cols(predict(mdl1, mil_data, type = "raw", layer = "instance")) %>%
    dplyr::distinct(bag_name, instance_name, bag_label, .pred_class, .pred)
Output
  # An MILD data frame: 60 x 5 with 15 bags, 60 instances
  # and instance labels: 0, 0, 0, 0, 0, ...
     bag_label bag_name instance_name .pred_class  .pred
         <dbl> <chr>    <chr>         <fct>        <dbl>
   1         0 bag1     bag1inst1     0           -0.380
   2         0 bag1     bag1inst2     0           -0.421
   3         0 bag1     bag1inst3     0           -0.377
   4         0 bag1     bag1inst4     0           -0.428
   5         1 bag2     bag2inst1     0           -0.321
   6         1 bag2     bag2inst2     0           -0.363
   7         1 bag2     bag2inst3     0           -0.251
   8         1 bag2     bag2inst4     1            0.283
   9         0 bag3     bag3inst1     0           -0.332
  10         0 bag3     bag3inst2     0           -0.395
  # ... with 50 more rows

misvm_orova() examples work

Code
  data("ordmvnorm")
  x <- ordmvnorm[, 3:7]
Warning <warning>
  Dropping 'mi_df' class as required column was removed.
Code
  y <- ordmvnorm$bag_label
  bags <- ordmvnorm$bag_name
  mdl1 <- misvm_orova(x, y, bags)
  predict(mdl1, x, new_bags = bags)
Output
  # A tibble: 1,000 x 1
     .pred_class
     <fct>      
   1 2          
   2 2          
   3 2          
   4 2          
   5 2          
   6 3          
   7 3          
   8 3          
   9 3          
  10 3          
  # ... with 990 more rows
Code
  df1 <- dplyr::bind_cols(y = y, bags = bags, as.data.frame(x))
  df1 %>% dplyr::bind_cols(predict(mdl1, df1, new_bags = bags, type = "class")) %>%
    dplyr::bind_cols(predict(mdl1, df1, new_bags = bags, type = "raw")) %>%
    dplyr::select(-starts_with("V")) %>% dplyr::distinct()
Output
      y bags .pred_class      .pred_1     .pred_2      .pred_3      .pred_4
  1   2    1           2  0.072054072  1.24157688 -0.005075918 -0.783087461
  2   4    2           3 -1.251419361 -0.44724656  2.357316056  1.435526426
  3   1    3           1  2.266372449  2.26051385 -1.635840749 -2.449979864
  4   3    4           2  2.036194818  2.48865381  1.218059767 -0.176115919
  5   1    5           1  0.999497111  0.43651819 -0.486774613 -2.238297731
  6   5    6           3  1.920010812  1.38391110  4.473871500  3.981368930
  7   4    7           3  0.730430029  1.07444170  1.818187547  1.000264053
  8   4    8           3  0.036505464  1.31947988  3.995412773  3.083747508
  9   3    9           3  0.209234901 -1.10561202  1.961314768  0.552380675
  10  4   10           3 -0.504233266  0.76282372  3.153695469  2.711460653
  11  5   11           3  0.054740339 -0.68454697  3.078920102  2.023132149
  12  3   12           3 -0.164563516 -1.97443357  0.926269029  0.107442544
  13  5   13           3 -0.569257195 -1.50596301  4.681906898  4.271581859
  14  3   14           1  1.797814850  0.68511482  1.334480188 -0.018156454
  15  2   15           2  0.354159148  1.30396993  0.299802741 -0.792499384
  16  3   16           2  0.900791960  1.64894819  0.733013977 -0.243052192
  17  2   17           1  2.751060969  2.09543404  0.767178044 -0.206214135
  18  2   18           2  0.012863158  2.62296119 -0.093230935 -1.409281102
  19  2   19           1  1.205695843  1.01526852 -1.054750654 -2.326673454
  20  1   20           2  0.001415356  1.07104086 -0.896129480 -2.233466605
  21  3   21           3 -0.219947873  0.79395459  2.593885919  1.339418082
  22  2   22           1  0.954808999 -0.13140503  0.154058385 -1.048479675
  23  3   23           2 -0.951905691  1.20592625  0.833612057 -0.742110448
  24  4   24           3 -0.273808301  0.37504428  2.761489395  1.500488098
  25  2   25           2 -0.151453073  1.78821302  0.097761509 -0.625524717
  26  4   26           3  0.548553011  0.91816008  2.692972337  1.529978372
  27  4   27           3 -0.838129504  0.87575492  2.942167421  2.106161023
  28  2   28           2 -0.459396273  2.71463070  0.030473723 -0.949329104
  29  5   29           3  0.168078546 -0.42048836  3.765049712  3.077313282
  30  3   30           3  0.204011620  0.89524867  1.470316006  1.152517057
  31  2   31           3 -0.353540848  0.06905779  0.518345886 -1.117263057
  32  5   32           3  0.347529726  1.96050469  4.092332114  2.777554297
  33  2   33           1  1.551470304 -0.17652552  0.458605980 -0.467230099
  34  5   34           3  0.812941100  1.27701647  3.693666669  3.265801954
  35  4   35           1  2.870066694  1.07442101  1.734199670  0.962302122
  36  3   36           3 -0.551027795  0.06258126  1.308833458  0.575725816
  37  4   37           3  0.989409528 -0.63987667  3.171262186  2.424230459
  38  2   38           1  2.284649128  0.31490852 -0.048948873 -1.266380708
  39  4   39           3  1.067812621 -0.09306674  2.750077773  1.984667458
  40  2   40           3  0.520817262 -1.62116210  0.957123790 -0.829010258
  41  1   41           1  1.274290440  0.83835316 -1.056238423 -2.538301933
  42  1   42           2  1.984378137  2.66491196 -0.485998231 -2.147887984
  43  2   43           2 -0.145363418  0.80692325 -0.709848943 -1.783606824
  44  2   44           2  0.401963950  1.08925411  0.430524106 -1.210678768
  45  2   45           1  2.090161856  1.42710530  0.305093008 -0.860630133
  46  3   46           3 -0.179769147  0.67295977  0.923519375  0.166548835
  47  3   47           1  3.023586198 -0.04441672  0.870074332  0.082737064
  48  4   48           3  0.594910297 -0.40790117  3.108895289  2.441552201
  49  2   49           2  0.517934018  0.99982514  0.971428071 -0.477676824
  50  4   50           3  0.841524707  0.12691384  2.288197352  1.508173550
  51  3   51           1  2.179260305 -0.85912454  0.816258705 -0.086590741
  52  5   52           3  1.123590058  1.32385089  4.606127446  3.815318462
  53  5   53           3  1.523522406 -0.05627962  2.949281404  2.487092570
  54  2   54           2  0.256062043  0.41876378  0.199033146 -0.590743872
  55  4   55           2 -0.307830686  1.91476237  1.854087045  1.132002454
  56  3   56           3 -1.072896286 -0.08795983  1.536126899  0.926894203
  57  5   57           3  2.095149008 -0.07867520  4.525285138  3.668547097
  58  1   58           1  1.509681540  0.36224184 -1.179052225 -2.919152012
  59  2   59           1  1.500651712  1.23943073 -0.487119290 -1.529960657
  60  4   60           3  0.153476330  1.12512087  2.965594188  1.719696833
  61  2   61           2  0.107433901  0.99998094  0.251861562 -0.668879441
  62  2   62           2  1.021472500  1.10098424 -0.483214988 -1.764205357
  63  2   63           2 -0.577488392  0.96101424 -0.147362894 -1.373661079
  64  5   64           3 -1.470440642  0.34004044  3.749092557  3.320600526
  65  2   65           2 -0.115208922  1.35927809 -0.037468827 -2.140192951
  66  4   66           3  0.492635619  1.70587041  3.828368807  3.067970029
  67  2   67           2  1.314915397  1.52793709 -0.531016585 -2.183768654
  68  4   68           3  0.997063986  1.44167808  2.692431224  1.871823863
  69  1   69           2  0.179755225  1.01227117 -1.192076661 -1.692757366
  70  2   70           2  0.950844268  1.21782268  0.712069112 -0.805553592
  71  4   71           3  0.570080774  0.96193964  2.624338049  2.296915214
  72  4   72           3 -1.453889746  0.58589034  2.658095509  1.339789694
  73  1   73           2  1.445004530  1.45944954 -1.468585910 -2.382518721
  74  5   74           3  0.331242540  1.17657845  5.302493853  4.687040860
  75  5   75           3  2.064429323  2.96099424  4.444482071  3.548902076
  76  4   76           3 -0.028601890  0.19153408  2.991329788  2.446507117
  77  1   77           2 -0.189502244  0.29768322 -1.143863726 -2.113323367
  78  3   78           3  0.813181217 -1.00040792  2.280448356  2.116439098
  79  2   79           2 -0.712710553  0.55617328  0.517086303 -0.093885228
  80  1   80           1  1.630919431  0.73688837 -0.341944665 -1.446730604
  81  3   81           3  0.902920480 -0.86940201  2.091036922  0.798079169
  82  3   82           1  1.636798724  0.36720409  0.526272127 -0.661387375
  83  2   83           1  1.531500293  1.51018878 -0.503977890 -1.535820327
  84  5   84           3  0.464437512  1.83063333  4.740010492  3.734087786
  85  2   85           1  2.447572647  1.09642106  0.481866056 -0.500450818
  86  2   86           1  2.693553783  0.99995510 -0.292739964 -1.303295992
  87  3   87           3  0.882733260  0.02994256  2.026985038  0.973188925
  88  3   88           3  0.769492513  0.60412049  1.149114506  0.006639411
  89  3   89           3  1.163435069  1.04646194  1.424447656  0.273940686
  90  2   90           2  0.594042888  1.61961486 -0.251107974 -1.180828674
  91  3   91           3 -0.383868294  0.22873649  1.000184845 -0.190455535
  92  4   92           3  1.445654335  0.92329461  2.390422626  1.353768980
  93  3   93           3  0.895493731  1.56358634  2.242955217  1.189125683
  94  2   94           3  0.907150996  0.92386627  1.188409683 -0.471069578
  95  3   95           2  0.762152263  1.03743805  0.791851575 -0.165396439
  96  3   96           1  0.715915316 -0.39463666  0.255683255 -0.150974367
  97  2   97           3 -0.155145008 -0.57753861  0.473907217 -0.555776688
  98  2   98           2  0.135714595  0.41352574 -0.208214572 -0.552287748
  99  2   99           2 -0.141625157  2.23280495 -0.074145655 -0.817376099
  100 2  100           2 -0.019076930  1.04704126  0.434395332 -0.999866642
  101 2  101           1  1.277564724  0.63581165  0.362761950 -1.742433608
  102 2  102           3 -0.006713045 -0.03519697  0.371099531 -1.000979568
  103 2  103           1  1.150995278  0.93893790 -0.453058573 -1.565305108
  104 5  104           3 -0.084590673  0.32435353  4.722037336  4.096075587
  105 1  105           1  1.049951247  0.51900629 -0.407220119 -1.882503879
  106 3  106           3 -0.380301725  0.22443279  1.623335874  0.343203060
  107 3  107           2  0.375821293  2.64082208  0.999198140 -0.301840905
  108 1  108           1  1.111465715  0.66199956 -1.247840729 -2.510232570
  109 3  109           3  0.666430137  0.99386114  2.098551048  1.569297967
  110 5  110           3  0.908593319  1.15870068  3.672511343  3.623525435
  111 1  111           2  0.200115809  0.27917410 -0.454184020 -2.031033198
  112 3  112           1  0.917679336  0.28386471  0.656506910 -0.746684752
  113 2  113           1  1.798310728  1.31431887 -0.836225608 -2.183067661
  114 1  114           2  0.999975552  1.06284430 -1.139154293 -2.323531747
  115 5  115           3 -1.292889704  2.43593054  3.738333559  2.593191003
  116 2  116           2  0.195980600  1.12561416 -0.147867431 -0.403210177
  117 4  117           3  0.653941590  1.06963348  1.839933954  1.000262988
  118 2  118           2  0.573141965  0.73200876  0.536599552 -0.584070336
  119 1  119           1  1.209429578  0.35359752 -0.202944858 -1.454486222
  120 5  120           3  1.272566079  1.55025619  4.051944143  3.215528155
  121 1  121           1  0.308112225  0.18483777 -0.868885078 -1.793322748
  122 2  122           2 -1.538849904  0.84322486 -0.120521607 -1.199301261
  123 3  123           2 -0.448733944  2.76807920  1.993302722  0.786583597
  124 3  124           3  1.581181008  1.76559761  1.819032454  0.840982124
  125 2  125           1  0.119633865  0.10412126 -0.099776725 -1.407163380
  126 2  126           2  0.393379327  0.86242251  0.069857642 -1.779543657
  127 5  127           3  0.590272911  1.32850469  4.183207523  3.832928424
  128 3  128           3  0.472820279  0.82437661  1.717874666  1.333198988
  129 1  129           2  0.943847045  2.73668518 -1.419371165 -3.087451597
  130 3  130           2  0.810135639  1.85824791  0.961275675 -0.917301006
  131 4  131           3  0.358246998 -0.44392872  2.906291423  2.561670550
  132 2  132           2  0.774586840  1.66293656  0.855561712 -0.917567867
  133 3  133           3 -0.550711238 -0.56926697  0.694228446 -0.678812703
  134 5  134           3 -0.012112268  1.22860183  4.465948576  3.602452262
  135 4  135           4 -0.291949799  1.11774318  2.222342191  2.343471199
  136 5  136           3  0.942324879  2.65928102  3.974654849  2.632401842
  137 2  137           1  1.778003397  1.11342719  0.160190292 -1.000126956
  138 5  138           3  0.855095736  0.55893253  4.161465376  3.197801129
  139 5  139           3  0.636543509  1.53739284  3.875415445  3.548614790
  140 3  140           3  0.100977767  1.02563567  1.517060405  0.519591116
  141 2  141           1  1.363349313  1.09390713 -0.265016510 -1.889752422
  142 3  142           3  0.517022989  0.47420072  1.822826898  0.149811006
  143 3  143           3  0.420427055  0.62233735  0.844955376 -0.436951189
  144 5  144           3 -1.144003804  0.96698257  3.728894705  3.555935707
  145 4  145           3  1.202471103  0.65641832  2.188028475  1.084486715
  146 1  146           2  1.396454476  1.48357989 -1.094755032 -2.171843353
  147 5  147           3  0.777818253  1.31950973  3.630842333  3.439383932
  148 3  148           3 -2.086082825 -0.18524611  1.090262754 -0.149644034
  149 3  149           3  1.012761279  1.79634256  2.103497227  0.745128077
  150 1  150           2  0.885941333  1.48454696 -0.061515541 -0.783359064
  151 4  151           3  0.013111638 -0.22119890  1.932968374  1.012871724
  152 2  152           2 -0.530687880 -0.06287797 -0.651997451 -1.669859980
  153 4  153           3  0.869793218  0.77671031  1.728178617  0.914770455
  154 2  154           2  0.190652685  1.71395014 -0.229030835 -1.543881873
  155 1  155           2 -0.178580776  0.92305141 -1.036292130 -2.165478548
  156 1  156           2  1.000201483  2.92361363 -1.325700627 -2.729749197
  157 2  157           2 -0.015094567  1.91893656  0.031534694 -0.946125280
  158 4  158           3 -0.812626914  0.95648766  2.806138958  1.876790794
  159 2  159           3 -1.147613773  0.70381535  1.078614431  0.001691334
  160 3  160           3 -0.005963495 -0.42144411  1.346029283  0.866144024
  161 4  161           3 -0.487768292  0.16039940  1.889244350  0.838848852
  162 4  162           3 -0.325277453  0.44750972  3.522302671  2.334300848
  163 2  163           1  0.810485670  0.21194222 -0.236538595 -0.989193244
  164 4  164           3 -0.586188903 -1.40828162  3.153760500  2.445556093
  165 2  165           1  1.707600456  1.64506602 -0.354574953 -1.106089709
  166 1  166           1  0.516966404  0.43037407 -0.843319109 -2.105307436
  167 1  167           1  1.240764247  0.96035169 -1.403132441 -2.723452555
  168 2  168           2  1.150271113  3.59719968  0.710025608 -0.772309968
  169 3  169           3  1.154990522  1.21336040  1.537909335  0.282153028
  170 3  170           2 -0.530602126  1.44399045  0.164801983 -1.276018499
  171 4  171           3 -0.157253345 -1.14002239  2.117835761  1.000416289
  172 1  172           1  1.374174118  0.40075009 -0.778209698 -2.335232604
  173 2  173           1  2.333911387  0.39848361  0.235552515 -0.829819104
  174 3  174           3 -0.332185510 -1.33640388  1.172623486  0.066823119
  175 2  175           3 -0.327081449  0.10316262  1.302235951  0.484237839
  176 2  176           2  1.015949323  1.80174907  0.017039788 -0.945153995
  177 4  177           3  0.403523641 -0.63949231  1.274572759  0.172783384
  178 2  178           1  1.088188898  0.51355476 -0.078971488 -0.744362702
  179 2  179           2 -0.164286920  1.15585033 -0.356885685 -1.492212171
  180 3  180           1  1.518219908 -0.07355124  1.000179024 -0.598403065
  181 3  181           1  2.102301483  1.52374512  0.422707945 -0.485696539
  182 2  182           1  0.579630818  0.47244020 -0.683296348 -1.185304536
  183 3  183           2  1.902651105  2.28923504  2.161821025  1.637501923
  184 1  184           1  1.540113414  1.46968383 -0.429542642 -1.565683732
  185 2  185           1  1.909916536 -0.52104883  0.749757617 -0.642477039
  186 4  186           3  0.141069414  1.23662770  2.006894338  0.999448779
  187 2  187           2  0.542736128  1.86111012  0.294251330 -0.339388904
  188 3  188           1  1.384725699 -1.51205961 -0.039519134 -1.270476702
  189 3  189           1  1.864789106  1.47779347  1.182041810  0.389903457
  190 5  190           3 -0.574479151  0.11035482  4.014472592  3.270696550
  191 4  191           3  0.068318643  1.33079012  2.639410743  1.645692123
  192 2  192           2  0.326891249  1.53619415  0.133795222 -1.210934106
  193 2  193           1  2.007857820  0.70729058 -0.565017074 -1.370434743
  194 2  194           2  1.067989221  3.13948837  0.476273288 -0.756853035
  195 5  195           3  1.210197177 -0.75076373  4.808854585  4.473698884
  196 3  196           3  0.362578606  1.26753424  1.347520007 -0.131381656
  197 2  197           3 -0.640280205  0.29798615  1.585048445  0.502836911
  198 3  198           3  0.461652471 -2.05551325  1.000172781  0.125844624
  199 1  199           1  1.000201245 -0.28377772 -0.529427122 -1.847119454
  200 1  200           1  1.815506761  0.29396669 -0.726221317 -1.510439568
          .pred_5
  1   -2.58002883
  2   -0.07684673
  3   -4.35822799
  4   -1.95356763
  5   -3.99207671
  6    1.93351275
  7   -0.66240349
  8    1.18028676
  9   -1.16592851
  10   0.77978484
  11   1.00035160
  12  -1.50176706
  13   2.41059782
  14  -1.53078230
  15  -2.92647034
  16  -1.84243289
  17  -1.57981776
  18  -3.17228600
  19  -3.74323245
  20  -4.02264278
  21  -0.19119280
  22  -2.75209990
  23  -2.69603183
  24  -0.24203523
  25  -2.69850191
  26  -0.19472477
  27   0.53465529
  28  -2.63182959
  29   1.00007002
  30  -0.92024133
  31  -2.47197917
  32   1.49964739
  33  -2.12023746
  34   1.68804362
  35  -0.58162609
  36  -0.81888860
  37   0.78236444
  38  -3.10579054
  39   0.47156372
  40  -2.18379805
  41  -4.40018543
  42  -3.90076015
  43  -3.27682785
  44  -2.74666887
  45  -2.68843170
  46  -1.81494788
  47  -1.47035622
  48   0.46722703
  49  -1.99203120
  50  -0.12349569
  51  -2.10959676
  52   2.09263402
  53   0.99979963
  54  -2.73581967
  55  -1.01611189
  56  -0.83358768
  57   1.92926482
  58  -4.54639348
  59  -3.41947711
  60   0.19544692
  61  -2.46984187
  62  -3.65850087
  63  -3.19360474
  64   1.82827101
  65  -3.47411810
  66   1.21509269
  67  -4.21862304
  68   0.38832820
  69  -3.81505895
  70  -2.07675393
  71   0.53085258
  72   0.42778565
  73  -4.48460656
  74   2.92744210
  75   2.14952714
  76   0.54757355
  77  -4.11282145
  78  -0.05549175
  79  -2.04012566
  80  -3.52356153
  81  -0.74699403
  82  -2.63327923
  83  -3.76415925
  84   2.40164351
  85  -2.37326774
  86  -3.29600258
  87  -0.64494508
  88  -1.55588564
  89  -1.23462421
  90  -3.14457588
  91  -1.55665731
  92  -0.46741107
  93  -0.36071430
  94  -2.13941056
  95  -1.88584105
  96  -2.31279814
  97  -2.72506481
  98  -2.55486628
  99  -2.62755342
  100 -2.93103959
  101 -3.13908949
  102 -2.36598414
  103 -3.13311286
  104  2.47607255
  105 -3.87597827
  106 -1.13580430
  107 -1.80780393
  108 -4.02513628
  109 -0.53160920
  110  1.69841162
  111 -3.88190764
  112 -2.56385998
  113 -3.86837437
  114 -4.14417630
  115  0.99942799
  116 -2.65863372
  117 -0.76754823
  118 -2.27942602
  119 -3.27317032
  120  1.72560788
  121 -4.02924537
  122 -2.98682699
  123 -0.63185022
  124 -1.05365132
  125 -3.25180121
  126 -3.09785064
  127  1.89772202
  128 -1.03007030
  129 -4.76932157
  130 -1.83026680
  131  0.70763604
  132 -2.51050644
  133 -2.30067396
  134  1.96546545
  135  0.10061140
  136  1.41747201
  137 -3.10551589
  138  1.72763109
  139  1.97737571
  140 -1.46789447
  141 -3.59107922
  142 -1.20986782
  143 -1.97876091
  144  1.71976446
  145  0.03445753
  146 -3.79717233
  147  1.31584588
  148 -1.83044632
  149 -0.99217495
  150 -3.09378730
  151 -0.50430058
  152 -3.69861394
  153 -1.01143389
  154 -3.10652562
  155 -3.98430332
  156 -4.34843602
  157 -2.82600550
  158  0.29058746
  159 -1.71037418
  160 -1.14003962
  161 -0.86219140
  162  0.86711891
  163 -2.71227855
  164  1.13242136
  165 -3.25077099
  166 -4.21184001
  167 -4.32908290
  168 -2.53025092
  169 -1.20668692
  170 -2.53536903
  171 -0.89845528
  172 -4.16588482
  173 -2.50545962
  174 -1.58712329
  175 -1.15430985
  176 -2.73924017
  177 -1.37722823
  178 -2.54843043
  179 -3.27672842
  180 -2.12158393
  181 -2.24123529
  182 -3.47317552
  183 -0.10937610
  184 -3.30503450
  185 -2.34538027
  186 -0.92687356
  187 -2.09575427
  188 -2.95018409
  189 -1.63822035
  190  1.89281930
  191 -0.10896206
  192 -2.93719691
  193 -3.31089481
  194 -2.75203056
  195  2.99187180
  196 -1.53222689
  197 -1.06215402
  198 -1.69979180
  199 -3.50721222
  200 -3.37582254

misvm() examples work

Code
  set.seed(8)
  mil_data <- generate_mild_df(nbag = 20, positive_prob = 0.15, sd_of_mean = rep(
    0.1, 3))
  df <- build_instance_feature(mil_data, seq(0.05, 0.95, length.out = 10))
  mdl1 <- misvm(x = df[, 4:123], y = df$bag_label, bags = df$bag_name, method = "heuristic")
  mdl2 <- misvm(mi(bag_label, bag_name) ~ X1_mean + X2_mean + X3_mean, data = df)
  if (require(gurobi)) {
    mdl3 <- misvm(x = df[, 4:123], y = df$bag_label, bags = df$bag_name, method = "mip")
  }
  predict(mdl1, new_data = df, type = "raw", layer = "bag")
Output
  # A tibble: 80 x 1
     .pred
     <dbl>
   1 -1.04
   2 -1.04
   3 -1.04
   4 -1.04
   5  1.00
   6  1.00
   7  1.00
   8  1.00
   9 -1.00
  10 -1.00
  # ... with 70 more rows
Code
  df %>% dplyr::bind_cols(predict(mdl2, df, type = "class")) %>% dplyr::bind_cols(
    predict(mdl2, df, type = "raw")) %>% dplyr::distinct(bag_name, bag_label,
    .pred_class, .pred)
Output
     bag_label bag_name .pred_class       .pred
  1          0     bag1           0 -0.11805071
  2          1     bag2           1  1.01732791
  3          0     bag3           0 -0.24540426
  4          1     bag4           1  1.00046917
  5          0     bag5           1  0.15460188
  6          0     bag6           1  0.87469487
  7          1     bag7           1  0.16754553
  8          0     bag8           1  1.00811386
  9          1     bag9           1  0.99998275
  10         1    bag10           1  2.67168111
  11         1    bag11           1  0.29471379
  12         0    bag12           1  1.52487131
  13         1    bag13           1  2.15326561
  14         1    bag14           1  0.99956477
  15         1    bag15           0 -0.38940230
  16         1    bag16           1  0.67654218
  17         0    bag17           1  0.39241276
  18         1    bag18           0 -0.11878006
  19         0    bag19           1  0.06554383
  20         1    bag20           1  0.85951804

omisvm() examples work

Code
  if (require(gurobi)) {
    data("ordmvnorm")
    x <- ordmvnorm[, 3:7]
    y <- ordmvnorm$bag_label
    bags <- ordmvnorm$bag_name
    mdl1 <- omisvm(x, y, bags, weights = NULL)
    predict(mdl1, x, new_bags = bags)
    df1 <- dplyr::bind_cols(y = y, bags = bags, as.data.frame(x))
    df1 %>% dplyr::bind_cols(predict(mdl1, df1, new_bags = bags, type = "class")) %>%
      dplyr::bind_cols(predict(mdl1, df1, new_bags = bags, type = "raw")) %>%
      dplyr::distinct(y, bags, .pred_class, .pred)
  }
Warning <warning>
  Dropping 'mi_df' class as required column was removed.
Output
      y bags .pred_class       .pred
  1   2    1           2  2.12567387
  2   4    2           4  4.65794584
  3   1    3           1 -0.83805734
  4   3    4           3  2.63966213
  5   1    5           1 -0.25380927
  6   5    6           5  7.77042870
  7   4    7           3  3.72950569
  8   4    8           5  6.80992822
  9   3    9           3  3.70282546
  10  4   10           4  5.94699034
  11  5   11           4  5.94752631
  12  3   12           3  3.19506580
  13  5   13           5  8.35594177
  14  3   14           3  3.15834447
  15  2   15           2  1.33977357
  16  3   16           3  2.47991026
  17  2   17           3  2.70733748
  18  2   18           2  0.88989980
  19  2   19           2  0.55035855
  20  1   20           1 -0.48857803
  21  3   21           4  4.62498956
  22  2   22           2  1.34357488
  23  3   23           2  2.07230182
  24  4   24           4  5.11838378
  25  2   25           2  1.62530071
  26  4   26           4  5.04146527
  27  4   27           4  6.12983599
  28  2   28           2  1.38152030
  29  5   29           5  6.60015162
  30  3   30           3  3.26062479
  31  2   31           2  1.81985451
  32  5   32           5  7.11161632
  33  2   33           2  2.21294409
  34  5   34           5  7.29111446
  35  4   35           4  4.46349207
  36  3   36           3  3.98620574
  37  4   37           4  6.06686466
  38  2   38           2  1.56219942
  39  4   39           4  5.30727742
  40  2   40           2  2.27510342
  41  1   41           1 -0.81342852
  42  1   42           1  0.02151881
  43  2   43           2  0.52168663
  44  2   44           2  1.44739630
  45  2   45           2  1.59950373
  46  3   46           3  2.59372869
  47  3   47           3  2.74693863
  48  4   48           4  6.14110841
  49  2   49           2  2.32840644
  50  4   50           4  5.02891382
  51  3   51           3  2.44752466
  52  5   52           5  7.74094074
  53  5   53           5  6.42830548
  54  2   54           2  1.31239708
  55  4   55           3  3.99384803
  56  3   56           3  3.79146236
  57  5   57           5  8.07575177
  58  1   58           1 -0.54392096
  59  2   59           2  0.48349162
  60  4   60           4  5.71926852
  61  2   61           2  1.34308764
  62  2   62           2  0.51765081
  63  2   63           2  0.95240309
  64  5   64           5  7.39404182
  65  2   65           2  0.79525838
  66  4   66           5  6.70635073
  67  2   67           1  0.21166463
  68  4   68           4  5.30727742
  69  1   69           1 -0.17442229
  70  2   70           3  2.54644169
  71  4   71           4  5.61509347
  72  4   72           4  5.51145838
  73  1   73           1 -0.41594083
  74  5   74           5  9.28598108
  75  5   75           5  7.96521824
  76  4   76           4  5.62411564
  77  1   77           1 -0.05464613
  78  3   78           4  4.42463829
  79  2   79           2  1.94267090
  80  1   80           2  0.78140124
  81  3   81           3  3.95317076
  82  3   82           2  1.57994465
  83  2   83           2  0.59626748
  84  5   84           5  8.85967969
  85  2   85           2  1.96307114
  86  2   86           2  0.53479058
  87  3   87           4  4.53134302
  88  3   88           3  3.36033245
  89  3   89           3  3.60200338
  90  2   90           2  1.06057133
  91  3   91           3  2.98476241
  92  4   92           3  4.15237641
  93  3   93           4  4.60544506
  94  2   94           3  2.42829931
  95  3   95           3  2.51276246
  96  3   96           2  2.09600292
  97  2   97           2  1.47889650
  98  2   98           2  1.37766926
  99  2   99           2  1.15593677
  100 2  100           2  1.27380967
  101 2  101           2  1.19192283
  102 2  102           2  2.26486948
  103 2  103           2  0.96767384
  104 5  104           5  8.52363527
  105 1  105           2  0.36592471
  106 3  106           3  3.24715264
  107 3  107           3  2.85117594
  108 1  108           1 -0.66022643
  109 3  109           4  4.67142427
  110 5  110           5  7.27179022
  111 1  111           1 -0.18336695
  112 3  112           2  2.21778165
  113 2  113           1  0.02990462
  114 1  114           1 -0.42337571
  115 5  115           5  6.48828236
  116 2  116           2  1.27682708
  117 4  117           3  4.25799913
  118 2  118           2  2.10080070
  119 1  119           2  0.93064817
  120 5  120           5  7.52021032
  121 1  121           1 -0.29092487
  122 2  122           2  0.88786343
  123 3  123           3  3.98453366
  124 3  124           3  3.65453342
  125 2  125           2  0.90799958
  126 2  126           2  1.26472093
  127 5  127           5  7.55024109
  128 3  128           3  4.01900088
  129 1  129           1 -1.05125879
  130 3  130           3  2.62876392
  131 4  131           4  6.07376153
  132 2  132           2  1.90236816
  133 3  133           2  2.25972489
  134 5  134           5  8.11634426
  135 4  135           4  5.00440266
  136 5  136           5  6.81334557
  137 2  137           2  1.01226568
  138 5  138           5  7.64971991
  139 5  139           5  7.45437571
  140 3  140           3  3.24438924
  141 2  141           1  0.18105533
  142 3  142           3  3.94018318
  143 3  143           3  2.36976230
  144 5  144           5  7.27290297
  145 4  145           4  4.89267331
  146 1  146           1 -0.15294844
  147 5  147           5  7.39521045
  148 3  148           3  3.09050461
  149 3  149           3  3.76402819
  150 1  150           2  1.17147884
  151 4  151           3  4.25669454
  152 2  152           2  0.37705873
  153 4  153           3  3.50975303
  154 2  154           2  1.31948372
  155 1  155           1 -0.28261632
  156 1  156           1 -0.93086447
  157 2  157           2  1.29143142
  158 4  158           4  5.41757327
  159 2  159           3  2.81103227
  160 3  160           3  3.63819060
  161 4  161           3  4.16650748
  162 4  162           5  6.54752782
  163 2  163           2  1.20572586
  164 4  164           4  6.13185612
  165 2  165           2  0.56934837
  166 1  166           1 -0.42607856
  167 1  167           1 -0.78088361
  168 2  168           2  1.62783817
  169 3  169           3  3.76726554
  170 3  170           2  1.76488593
  171 4  171           4  4.41643401
  172 1  172           1 -0.46522749
  173 2  173           2  1.48310131
  174 3  174           3  2.76200714
  175 2  175           3  2.96845063
  176 2  176           2  1.57232998
  177 4  177           3  3.37146742
  178 2  178           2  1.27492919
  179 2  179           2  0.56000795
  180 3  180           3  2.50825115
  181 3  181           2  2.04157031
  182 2  182           2  0.69159336
  183 3  183           4  4.68423662
  184 1  184           2  0.64191641
  185 2  185           2  1.95328294
  186 4  186           3  4.06195481
  187 2  187           2  2.27932700
  188 3  188           2  1.08385635
  189 3  189           3  2.90625148
  190 5  190           5  7.49152508
  191 4  191           4  5.01998550
  192 2  192           2  1.51988937
  193 2  193           2  0.86665906
  194 2  194           2  1.34357488
  195 5  195           5  8.45275065
  196 3  196           3  3.40346084
  197 2  197           3  3.41311656
  198 3  198           3  2.35031158
  199 1  199           2  0.98324723
  200 1  200           2  0.55294597

smm() examples work

Code
  set.seed(8)
  n_instances <- 10
  n_samples <- 20
  y <- rep(c(1, -1), each = n_samples * n_instances / 2)
  instances <- as.character(rep(1:n_instances, each = n_samples))
  x <- data.frame(x1 = rnorm(length(y), mean = 1 * (y == 1)), x2 = rnorm(length(y),
  mean = 2 * (y == 1)), x3 = rnorm(length(y), mean = 3 * (y == 1)))
  df <- data.frame(instance_name = instances, y = y, x)
  mdl <- smm(x, y, instances)
  mdl2 <- smm(y ~ ., data = df)
  df %>% dplyr::bind_cols(predict(mdl, type = "raw", new_data = x, new_instances = instances)) %>%
    dplyr::bind_cols(predict(mdl, type = "class", new_data = x, new_instances = instances)) %>%
    dplyr::distinct(instance_name, y, .pred, .pred_class)
Output
     instance_name  y      .pred .pred_class
  1              1  1  1.0000000           1
  2              2  1  0.9216801           1
  3              3  1  1.0847376           1
  4              4  1  0.9357988           1
  5              5  1  0.9247263           1
  6              6 -1 -0.9880539          -1
  7              7 -1 -0.7498163          -1
  8              8 -1 -0.9375437          -1
  9              9 -1 -1.0000000          -1
  10            10 -1 -1.0317597          -1

summarize_samples() examples work

Code
  fns <- list(mean = mean, sd = sd)
  suppressMessages({
    summarize_samples(mtcars, group_cols = c("cyl", "gear"), .fns = fns) %>%
      print()
    summarize_samples(mtcars, group_cols = c("cyl", "gear"), .fns = fns, cor = TRUE) %>%
      print()
  })
Output
  # A tibble: 8 x 20
      cyl  gear mpg_mean disp_mean hp_mean drat_mean wt_mean qsec_mean vs_mean
    <dbl> <dbl>    <dbl>     <dbl>   <dbl>     <dbl>   <dbl>     <dbl>   <dbl>
  1     4     3     21.5      120.     97       3.7     2.46      20.0     1  
  2     4     4     26.9      103.     76       4.11    2.38      19.6     1  
  3     4     5     28.2      108.    102       4.1     1.83      16.8     0.5
  4     6     3     19.8      242.    108.      2.92    3.34      19.8     1  
  5     6     4     19.8      164.    116.      3.91    3.09      17.7     0.5
  6     6     5     19.7      145     175       3.62    2.77      15.5     0  
  7     8     3     15.0      358.    194.      3.12    4.10      17.1     0  
  8     8     5     15.4      326     300.      3.88    3.37      14.6     0  
  # ... with 11 more variables: am_mean <dbl>, carb_mean <dbl>, mpg_sd <dbl>,
  #   disp_sd <dbl>, hp_sd <dbl>, drat_sd <dbl>, wt_sd <dbl>, qsec_sd <dbl>,
  #   vs_sd <dbl>, am_sd <dbl>, carb_sd <dbl>
  # A tibble: 8 x 56
      cyl  gear mpg_mean disp_mean hp_mean drat_mean wt_mean qsec_mean vs_mean
    <dbl> <dbl>    <dbl>     <dbl>   <dbl>     <dbl>   <dbl>     <dbl>   <dbl>
  1     4     3     21.5      120.     97       3.7     2.46      20.0     1  
  2     4     4     26.9      103.     76       4.11    2.38      19.6     1  
  3     4     5     28.2      108.    102       4.1     1.83      16.8     0.5
  4     6     3     19.8      242.    108.      2.92    3.34      19.8     1  
  5     6     4     19.8      164.    116.      3.91    3.09      17.7     0.5
  6     6     5     19.7      145     175       3.62    2.77      15.5     0  
  7     8     3     15.0      358.    194.      3.12    4.10      17.1     0  
  8     8     5     15.4      326     300.      3.88    3.37      14.6     0  
  # ... with 47 more variables: am_mean <dbl>, carb_mean <dbl>, mpg_sd <dbl>,
  #   disp_sd <dbl>, hp_sd <dbl>, drat_sd <dbl>, wt_sd <dbl>, qsec_sd <dbl>,
  #   vs_sd <dbl>, am_sd <dbl>, carb_sd <dbl>, cov_var_1 <dbl>, cov_var_2 <dbl>,
  #   cov_var_3 <dbl>, cov_var_4 <dbl>, cov_var_5 <dbl>, cov_var_6 <dbl>,
  #   cov_var_7 <dbl>, cov_var_8 <dbl>, cov_var_9 <dbl>, cov_var_10 <dbl>,
  #   cov_var_11 <dbl>, cov_var_12 <dbl>, cov_var_13 <dbl>, cov_var_14 <dbl>,
  #   cov_var_15 <dbl>, cov_var_16 <dbl>, cov_var_17 <dbl>, cov_var_18 <dbl>, ...

svor_exc() examples work

Code
  data("ordmvnorm")
  x <- ordmvnorm[, 3:7]
Warning <warning>
  Dropping 'mi_df' class as required column was removed.
Code
  y <- attr(ordmvnorm, "instance_label")
  mdl1 <- svor_exc(x, y)
Message <message>
  The SMO algorithm reached the maximum of 500 steps.
Code
  predict(mdl1, x)
Output
  # A tibble: 1,000 x 1
     .pred_class
     <fct>      
   1 1          
   2 1          
   3 2          
   4 1          
   5 1          
   6 1          
   7 1          
   8 4          
   9 2          
  10 2          
  # ... with 990 more rows
Code
  predict(mdl1, x, type = "raw")
Output
  # A tibble: 1,000 x 1
       .pred
       <dbl>
   1 -0.464 
   2 -1.08  
   3  0.500 
   4 -0.253 
   5  0.0886
   6 -0.0116
   7 -0.146 
   8  2.15  
   9  0.266 
  10  0.216 
  # ... with 990 more rows


Try the mildsvm package in your browser

Any scripts or data that you put into this service are public.

mildsvm documentation built on July 14, 2022, 9:08 a.m.