predict.mior | R Documentation |
mior
objectPredict method for mior
object
## S3 method for class 'mior' predict( object, new_data, type = c("class", "raw"), layer = c("bag", "instance"), new_bags = "bag_name", ... )
object |
An object of class |
new_data |
A data frame to predict from. This needs to have all of the features that the data was originally fitted with. |
type |
If |
layer |
If |
new_bags |
A character or character vector. Can specify a singular
character that provides the column name for the bag names in |
... |
Arguments passed to or from other methods. |
When the object was fitted using the formula
method, then the parameters
new_bags
and new_instances
are not necessary, as long as the names match
the original function call.
A tibble with nrow(new_data)
rows. If type = 'class'
, the tibble
will have a column .pred_class
. If type = 'raw'
, the tibble will have
a column .pred
.
Sean Kent
mior()
for fitting the mior
object.
if (require(gurobi)) { set.seed(8) # make some data n <- 15 X <- rbind( mvtnorm::rmvnorm(n/3, mean = c(4, -2, 0)), mvtnorm::rmvnorm(n/3, mean = c(0, 0, 0)), mvtnorm::rmvnorm(n/3, mean = c(-2, 1, 0)) ) score <- X %*% c(2, -1, 0) y <- as.numeric(cut(score, c(-Inf, quantile(score, probs = 1:2 / 3), Inf))) bags <- 1:length(y) # add in points outside boundaries X <- rbind( X, mvtnorm::rmvnorm(n, mean = c(6, -3, 0)), mvtnorm::rmvnorm(n, mean = c(-6, 3, 0)) ) y <- c(y, rep(-1, 2*n)) bags <- rep(bags, 3) repr <- c(rep(1, n), rep(0, 2*n)) y_bag <- classify_bags(y, bags, condense = FALSE) mdl1 <- mior(X, y_bag, bags) # summarize predictions at the bag layer library(dplyr) df1 <- bind_cols(y = y_bag, bags = bags, as.data.frame(X)) df1 %>% bind_cols(predict(mdl1, df1, new_bags = bags, type = "class")) %>% bind_cols(predict(mdl1, df1, new_bags = bags, type = "raw")) %>% distinct(y, bags, .pred_class, .pred) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.