Nothing
mior()
has reasonable performanceCode
print(roc$auc)
Output
Multi-class area under the curve: 0.6775
Code
print(mzoe)
Output
[1] 0.8466667
Code
print(mae)
Output
[1] 1.373333
Code
print(table(true, pred))
Output
pred
true 1 3
1 18 30
2 24 24
3 49 5
Code
print(roc$auc)
Output
Multi-class area under the curve: 0.5973
Code
print(mzoe)
Output
[1] 0.76
Code
print(mae)
Output
[1] 1.173333
Code
print(table(true, pred))
Output
pred
true 1 3
1 22 30
2 21 31
3 32 14
Code
print(roc$auc)
Output
Multi-class area under the curve: 0.6057
Code
print(mzoe)
Output
[1] 0.7
Code
print(mae)
Output
[1] 0.7733333
Code
print(table(true, pred))
Output
pred
true 1 2
1 22 26
2 25 23
3 11 43
Code
print(roc$auc)
Output
Multi-class area under the curve: 0.5268
Code
print(mzoe)
Output
[1] 0.68
Code
print(mae)
Output
[1] 0.7733333
Code
print(table(true, pred))
Output
pred
true 1 2
1 20 32
2 24 28
3 14 32
mior()
works for data-frame-like inputsCode
predict(mdl2, new_data = df1, type = "class", layer = "bag")
Output
# A tibble: 450 x 1
.pred_class
<fct>
1 1
2 1
3 2
4 1
5 2
6 1
7 2
8 1
9 1
10 1
# ... with 440 more rows
Code
predict(mdl2, new_data = df1, type = "class", layer = "instance")
Output
# A tibble: 450 x 1
.pred_class
<fct>
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
# ... with 440 more rows
Code
predict(mdl2, new_data = df1, type = "raw", layer = "bag")
Output
# A tibble: 450 x 1
.pred
<dbl>
1 1.84
2 0.455
3 -1.56
4 0.566
5 -2.61
6 0.622
7 -1.13
8 2.78
9 0.403
10 2.48
# ... with 440 more rows
Code
predict(mdl2, new_data = df1, type = "raw", layer = "instance")
Output
# A tibble: 450 x 1
.pred
<dbl>
1 1.84
2 10.9
3 3.44
4 0.566
5 2.38
6 5.63
7 2.85
8 2.78
9 0.681
10 2.48
# ... with 440 more rows
mior()
value returns make senseCode
models <- list(xy = mior(x = df1[, 4:6], y = df1$bag_label, bags = df1$bag_name,
method = "qp-heuristic", weights = NULL), formula = mior(mi(bag_label, bag_name) ~
V1 + V2, method = "qp-heuristic", data = df1, weights = NULL), mi_df = mior(
as_mi_df(df1, instance_label = NULL)), `no-scale` = mior(x = df1[, 4:6], y = df1$
bag_label, bags = df1$bag_name, method = "qp-heuristic", weights = NULL,
control = list(scale = FALSE))) %>% suppressWarnings() %>% suppressMessages()
print(lapply(models, names))
Output
$xy
[1] "gurobi_fit" "call_type" "features" "levels" "cost"
[6] "cost_eta" "kernel" "repr_inst" "n_step" "x_scale"
$formula
[1] "gurobi_fit" "call_type" "features" "levels" "cost"
[6] "cost_eta" "kernel" "repr_inst" "n_step" "x_scale"
[11] "formula" "bag_name"
$mi_df
[1] "gurobi_fit" "call_type" "features" "levels" "cost"
[6] "cost_eta" "kernel" "repr_inst" "n_step" "x_scale"
[11] "bag_name"
$`no-scale`
[1] "gurobi_fit" "call_type" "features" "levels" "cost"
[6] "cost_eta" "kernel" "repr_inst" "n_step"
Code
print(models)
Output
$xy
An mior object called with mior.default
Parameters:
method: qp-heuristic
kernel: linear
cost: 1
cost_eta: 1
scale: TRUE
weights: FALSE
Model info:
Levels of `y`: chr [1:3] "1" "2" "3"
Features: chr [1:3] "V1" "V2" "V3"
Number of iterations: 4
Gap to optimality:
$formula
An mior object called with mior.formula
Parameters:
method: qp-heuristic
kernel: linear
cost: 1
cost_eta: 1
scale: TRUE
weights: FALSE
Model info:
Levels of `y`: chr [1:3] "1" "2" "3"
Features: chr [1:2] "V1" "V2"
Number of iterations: 5
Gap to optimality:
$mi_df
An mior object called with mior.mi_df
Parameters:
method: qp-heuristic
kernel: linear
cost: 1
cost_eta: 1
scale: TRUE
weights: FALSE
Model info:
Levels of `y`: chr [1:3] "1" "2" "3"
Features: chr [1:4] "repr" "V1" "V2" "V3"
Number of iterations: 4
Gap to optimality:
$`no-scale`
An mior object called with mior.default
Parameters:
method: qp-heuristic
kernel: linear
cost: 1
cost_eta: 1
scale: FALSE
weights: FALSE
Model info:
Levels of `y`: chr [1:3] "1" "2" "3"
Features: chr [1:3] "V1" "V2" "V3"
Number of iterations: 4
Gap to optimality:
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.