Nothing
Code
bag_preds
Output
# A tibble: 8 x 4
# Groups: bag_name [8]
bag_label bag_name .pred_class .pred
<dbl> <chr> <fct> <dbl>
1 0 bag1 1 13.6
2 0 bag2 1 164.
3 0 bag3 1 23.7
4 1 bag4 1 47.1
5 0 bag5 0 -33.2
6 0 bag6 0 -31.4
7 0 bag7 1 8.95
8 1 bag8 1 643.
Code
bag_preds
Output
# A tibble: 8 x 4
# Groups: bag_name [8]
bag_label bag_name .pred_class .pred
<dbl> <chr> <fct> <dbl>
1 0 bag1 1 0.826
2 0 bag2 1 0.780
3 0 bag3 1 0.705
4 1 bag4 1 1.00
5 0 bag5 1 0.885
6 0 bag6 1 0.763
7 0 bag7 1 0.706
8 1 bag8 1 0.809
Code
bag_preds
Output
# A tibble: 8 x 4
# Groups: bag_name [8]
bag_label bag_name .pred_class .pred
<dbl> <chr> <fct> <dbl>
1 0 bag1 0 -0.731
2 0 bag2 0 -0.821
3 0 bag3 0 -0.768
4 1 bag4 0 -0.617
5 0 bag5 0 -0.809
6 0 bag6 0 -0.779
7 0 bag7 0 -0.800
8 1 bag8 0 -0.638
mismm()
value returns make senseCode
models <- list(`mildata-heur` = mismm(df, method = "heuristic"), `mildata-mip` = mismm(
df, method = "mip", control = list(nystrom_args = list(m = 10))),
`mildata-qp` = mismm(df, method = "qp-heuristic"), xy = mismm(x = as.data.frame(
df[, 4:6]), y = df$bag_label, bags = df$bag_name, instances = df$
instance_name), formula = mismm(mild(bag_label, bag_name, instance_name) ~ .,
data = df), `no-scale-heur` = mismm(df, method = "heuristic", control = list(
scale = FALSE)), `no-scale-mip` = mismm(df, method = "mip", control = list(
scale = FALSE, nystrom_args = list(m = 10))), `no-scale-qp` = mismm(df,
method = "qp-heuristic", control = list(scale = FALSE)), `no-weights` = mismm(
df, method = "heuristic", weights = FALSE)) %>% suppressWarnings() %>%
suppressMessages()
print(lapply(models, names))
Output
$`mildata-heur`
[1] "ksvm_fit" "call_type" "x" "features"
[5] "levels" "cost" "sigma" "weights"
[9] "kernel" "kernel_param" "repr_inst" "n_step"
[13] "useful_inst_idx" "inst_order" "x_scale" "bag_name"
[17] "instance_name"
$`mildata-mip`
[1] "gurobi_fit" "kfm_fit" "call_type" "features"
[5] "levels" "cost" "sigma" "weights"
[9] "kernel" "kernel_param" "x_scale" "bag_name"
[13] "instance_name"
$`mildata-qp`
[1] "gurobi_fit" "call_type" "x" "features"
[5] "levels" "cost" "sigma" "weights"
[9] "kernel" "kernel_param" "repr_inst" "n_step"
[13] "x_scale" "bag_name" "instance_name"
$xy
[1] "ksvm_fit" "call_type" "x" "features"
[5] "levels" "cost" "sigma" "weights"
[9] "kernel" "kernel_param" "repr_inst" "n_step"
[13] "useful_inst_idx" "inst_order" "x_scale"
$formula
[1] "ksvm_fit" "call_type" "x" "features"
[5] "levels" "cost" "sigma" "weights"
[9] "kernel" "kernel_param" "repr_inst" "n_step"
[13] "useful_inst_idx" "inst_order" "x_scale" "formula"
[17] "bag_name" "instance_name"
$`no-scale-heur`
[1] "ksvm_fit" "call_type" "x" "features"
[5] "levels" "cost" "sigma" "weights"
[9] "kernel" "kernel_param" "repr_inst" "n_step"
[13] "useful_inst_idx" "inst_order" "bag_name" "instance_name"
$`no-scale-mip`
[1] "gurobi_fit" "kfm_fit" "call_type" "features"
[5] "levels" "cost" "sigma" "weights"
[9] "kernel" "kernel_param" "bag_name" "instance_name"
$`no-scale-qp`
[1] "gurobi_fit" "call_type" "x" "features"
[5] "levels" "cost" "sigma" "weights"
[9] "kernel" "kernel_param" "repr_inst" "n_step"
[13] "bag_name" "instance_name"
$`no-weights`
[1] "ksvm_fit" "call_type" "x" "features"
[5] "levels" "cost" "sigma" "kernel"
[9] "kernel_param" "repr_inst" "n_step" "useful_inst_idx"
[13] "inst_order" "x_scale" "bag_name" "instance_name"
Code
print(models)
Output
$`mildata-heur`
An mismm object called with mismm.mild_df
Parameters:
method: heuristic
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: TRUE
weights: ('0' = 0.166666666666667, '1' = 1)
Model info:
Features: chr [1:3] "X1" "X2" "X3"
Number of iterations: 2
$`mildata-mip`
An mismm object called with mismm.mild_df
Parameters:
method: mip
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: TRUE
weights: ('0' = 0.166666666666667, '1' = 1)
Model info:
Features: chr [1:3] "X1" "X2" "X3"
Gap to optimality: 0
$`mildata-qp`
An mismm object called with mismm.mild_df
Parameters:
method: qp-heuristic
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: TRUE
weights: ('0' = 0.166666666666667, '1' = 1)
Model info:
Features: chr [1:3] "X1" "X2" "X3"
Number of iterations: 1
$xy
An mismm object called with mismm.default
Parameters:
method: heuristic
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: TRUE
weights: ('0' = 0.166666666666667, '1' = 1)
Model info:
Features: chr [1:3] "X1" "X2" "X3"
Number of iterations: 2
$formula
An mismm object called with mismm.formula
Parameters:
method: heuristic
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: TRUE
weights: ('0' = 0.166666666666667, '1' = 1)
Model info:
Features: chr [1:3] "X1" "X2" "X3"
Number of iterations: 2
$`no-scale-heur`
An mismm object called with mismm.mild_df
Parameters:
method: heuristic
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: FALSE
weights: ('0' = 0.166666666666667, '1' = 1)
Model info:
Features: chr [1:3] "X1" "X2" "X3"
Number of iterations: 2
$`no-scale-mip`
An mismm object called with mismm.mild_df
Parameters:
method: mip
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: FALSE
weights: ('0' = 0.166666666666667, '1' = 1)
Model info:
Features: chr [1:3] "X1" "X2" "X3"
Gap to optimality: 0
$`no-scale-qp`
An mismm object called with mismm.mild_df
Parameters:
method: qp-heuristic
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: FALSE
weights: ('0' = 0.166666666666667, '1' = 1)
Model info:
Features: chr [1:3] "X1" "X2" "X3"
Number of iterations: 1
$`no-weights`
An mismm object called with mismm.mild_df
Parameters:
method: heuristic
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: TRUE
weights: FALSE
Model info:
Features: chr [1:3] "X1" "X2" "X3"
Number of iterations: 2
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.