Nothing
Code
print(mzoe)
Output
[1] 0.24
Code
print(mae)
Output
[1] 0.24
Code
print(table(bag_resp, bag_pred))
Output
bag_pred
bag_resp 1 2 3 4 5
1 2 8 0 0 0
2 0 34 0 0 0
3 0 3 11 9 0
4 0 0 2 17 1
5 0 0 0 1 12
Code
print(mzoe)
Output
[1] 0.36
Code
print(mae)
Output
[1] 0.36
Code
print(table(bag_resp, bag_pred))
Output
bag_pred
bag_resp 1 2 3 4 5
1 2 15 0 0 0
2 0 29 2 0 0
3 0 2 11 12 0
4 0 0 2 11 1
5 0 0 0 2 11
misvm_orova()
value returns make senseCode
models <- list(heur = misvm_orova(x = df2[, 3:7], y = df2$bag_label, bags = df2$
bag_name, method = "heuristic"), qp = misvm_orova(x = df2[, 3:7], y = df2$
bag_label, bags = df2$bag_name, method = "qp-heuristic"), mip = misvm_orova(
x = df2[, 3:7], y = df2$bag_label, bags = df2$bag_name, method = "mip"),
formula = misvm_orova(mi(bag_label, bag_name) ~ V1 + V2, method = "qp-heuristic",
data = df2), mi_df = misvm_orova(as_mi_df(df2, instance_label = NULL))) %>%
suppressWarnings() %>% suppressMessages()
print(lapply(models, names))
Output
$heur
[1] "fits" "call_type" "levels" "features" "kernel"
$qp
[1] "fits" "call_type" "levels" "features" "kernel"
$mip
[1] "fits" "call_type" "levels" "features" "kernel"
$formula
[1] "fits" "call_type" "levels" "features" "kernel" "formula"
[7] "bag_name"
$mi_df
[1] "fits" "call_type" "levels" "features" "kernel" "bag_name"
Code
print(models)
Output
$heur
An misvm_orova object called with misvm_orova.default
Parameters:
method: heuristic
kernel: linear
cost: 1
scale: TRUE
weights: TRUE
Model info:
Number of models: 5
Levels of `y`: chr [1:5] "1" "2" "3" "4" "5"
Features: chr [1:5] "V1" "V2" "V3" "V4" "V5"
Number of iterations: 3 2 3 2 3
$qp
An misvm_orova object called with misvm_orova.default
Parameters:
method: qp-heuristic
kernel: linear
cost: 1
scale: TRUE
weights: TRUE
Model info:
Number of models: 5
Levels of `y`: chr [1:5] "1" "2" "3" "4" "5"
Features: chr [1:5] "V1" "V2" "V3" "V4" "V5"
Number of iterations: 3 2 2 1 0
$mip
An misvm_orova object called with misvm_orova.default
Parameters:
method: mip
kernel: linear
cost: 1
scale: TRUE
weights: TRUE
Model info:
Number of models: 5
Levels of `y`: chr [1:5] "1" "2" "3" "4" "5"
Features: chr [1:5] "V1" "V2" "V3" "V4" "V5"
Gap to optimality: 0 0 0 0 0
$formula
An misvm_orova object called with misvm_orova.formula
Parameters:
method: qp-heuristic
kernel: linear
cost: 1
scale: TRUE
weights: TRUE
Model info:
Number of models: 5
Levels of `y`: chr [1:5] "1" "2" "3" "4" "5"
Features: chr [1:2] "V1" "V2"
Number of iterations: 2 2 2 1 1
$mi_df
An misvm_orova object called with misvm_orova.mi_df
Parameters:
method: heuristic
kernel: linear
cost: 1
scale: TRUE
weights: TRUE
Model info:
Number of models: 5
Levels of `y`: chr [1:5] "1" "2" "3" "4" "5"
Features: chr [1:5] "V1" "V2" "V3" "V4" "V5"
Number of iterations: 3 2 3 2 3
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.